垄断竞争框架下的财政政策和货币政策

关键词: 垄断竞争, 灵活价格, 刚性价格, 菲利普斯曲线, 财政政策, 货币政策

一、导言

政府如何制定财政政策和货币政策来刺激长期经济增长以及调节经济周期波动一直是宏观经济学领域的重要问题, 也是宏观经济学家们长期以来孜孜不倦努力思考和研究的问题。回答这个问题, 我们首先将公共财政以及动态一般均衡的研究工具和思想引入到宏观经济学中来。

源配置集：资源约束条件和可实施约束条件。资源约束条件由市场出清条件来刻画，而可实施约束条件是指消费者的预算约束，其中消费者和企业选择的边际条件替代了政府的宏观政策措施和价格系统。这样，上述两个约束条件仅仅取决于消费者的资源配置结果。在典型的公共财政文献中，这样的最优税收选择问题通常称为拉姆齐问题，而拉姆齐问题的解称为拉姆齐资源配置和拉姆齐政策。由此，我们知道拉姆齐模型是关于总量经济的自然的瓦尔拉基准模型，该模型不仅排除了市场不完全性，而且排除了由于消费者异质性产生的问题。

事实上，我们可以通过分析在不同时期和不同冲击情况下，边际替代率和边际转化率之间的关系来理解政府最优税收政策。根据拉姆齐—萨谬尔森法则，从社会福利最优化的角度来分析，分散经济中，经济个体的资源配置最优选择使得消费者消费选择的边际替代率等于企业生产选择的边际转化率。② 在考虑政府税收时，政府税收政策的选择必须保证在不同时期不同状态和边际替代率和边际转化率之间关系的稳定。另一方面，由于各期的边际替代率和边际转化率的比例关系取决于各期税收比例，所以稳定的资源跨期配置要求劳动收入税和消费税基本上保持稳定。从这一角度来看，如果政府征收的税收是扭曲税，那么税收政策的起伏波动就不会造成社会福利的损失，所以社会福利最优要求政府各类的税收收入基本保持不变。

这样，当经济体受到冲击的时候，一方面政府的税收收入是相对不变的，而另一方面政府消费支出是随冲击状态相机变化的。于是政府债券的出现就充当了冲击吸收器的作用，它必须为政府的公共消费提供完全的保险。Lucas and Stokey(1983)强调了这种财政政策指导的前提是，政府债券的收益率必须是完全状态相机的，也就是说政府债券的收益率随着经济实际变化冲击的性质而不同。同时，债务市场必须是完备的，不存在任何的借贷约束。如果政府债券是完全状态相机的，那么也就意味着无论面对怎样的随机冲击，政府都不需要调整税收来维持自己的消费支出，而只是从经济个体那里获得（或者是支付给经济个体）一次性总量转移支付以弥补财政赤字（或者是抵消财政盈余）。在这种情况下，各期资源配置以及政府财政政策的相关性也就完全取决于各期随机变量之间的相关性。如果跨期随机变量的分布遵循随机游走，那么跨期资源配置以及政府政策的分布就遵循随机游走；如果随机变量各期相关，相应地，其他变量跨期相关。Barro(1979)通过一个持久性收入消费模型表明无

② 参见 Blanchard and Fischer(1989)第二章。
论各期随机变量之间是否相关，最优政府税收和债券发行量都应该服从随机游走。Hansen，Roberds和Sargent(1991)通过实证研究表明了巴罗的结论。

但是大量的实证研究表明，在现实经济中，无论各期的随机变量冲击是否存在相关性，政府各期税收之间的相关性是显著的。那么如何建立起不同理论之间联系的纽带呢？

事实上，我们在现实社会中几乎看不到完全状态使用的政府债券，这是因为未来随机变量的实现根本无法得到证实。政府债券可能是非状态使用的，而且社会福利最大化同样要求各期的税收水平是平滑稳定的。这样当经济体遭受战争之类恶性冲击之后，因为政府债券不可能为未知的公共消费支出提供完全的保险，所以政府唯一的选择是永久性地提高税收水平和债券发行量。这一政策的变化显然会造成社会福利的永久性损失。另一方面，当经济体面临繁荣时期时，政府相应地会永久性地降低税收水平，从而使社会福利水平从这一刻开始永久性地增加。根据这样的分析我们可以想象到，如果政府发行债券不是完全状态使用的，那么各期的资源配置和政府政策就会与随机冲击的历史水平密切相关。这一结论来自于Marcet，Sargent和Seppälä(2000)。他们的模型假定政府债券在各期的回报并不取决于当期随机变量的分布，这样经济个体对政府债券的投资不存在任何的风险。在这种环境下，他们证明无论各期的随机变量是否相关，政府各期的最优政策呈现出相关性。这也就意味着，如果经济体在某一期受到了恶性的随机冲击，那么在随后各期中政府的最优政策要求永久性地提高税率和政府债券发行量。

这一分析结果表明债券市场的不完善性解释了资源配置的跨期相关性。本文的研究将从凯恩斯传统的角度来解释这种相关性，也就是说，如果产品市场是不完全的，且企业面临刚性的价格调整，那么政府各期最优的财政政策也是相关的。

我们通过动态一般均衡货币模型研究在不同的价格设定环境下政府宏观经济政策对实际经济资源配置的影响。在模型中，我们假定企业唯一的生产要素是劳动，不同的企业生产具有差异的中间产品。正是由于经济体中产品的差异性，按照Dixit和Stiglitz(1977)的思想，我们可以假定经济体中市场结构是垄断竞争的。在这样的经济体中，企业从最大化企业市场价值的角度出发，选择各期的产品价格。另一方面，我们假定价格调整刚性可能存在。沿袭Rotemberg(1982)的构造，假定这种刚性来自于企业在调整各期价格的过程中面临着凸性的实际摩擦成本。另外，为尽量接近现实经济地讨论不同财政政策工具对经济变量的影响以及各种政策工具之间的相互关系，我们的模型中假定政府为满足外生的政府消费需求，向经济个体征收消费税、劳动收入税以及企业利润税，同时发行非状态相机制单期政府债券和货币。最后，为了简化模型分析，我们假定政府对于宏观经济政策的实施做出完全承诺。

基于这样的动态经济环境设置，通过对均衡结果的讨论，我们希望建立起资源配置结果和宏观经济政策之间显性的相互关系。根据拉姆齐—萨缪尔森法则，我们知道在没有政府行为的环境中，最优社会资源配置结果必然要求资源配置的边际替代率等于边际转换率。

如果存在扭曲税，则造成了边际替代率和边际转换率之间关系的扭曲，而最优税收的选择必须保持社会资源配置的均衡，这样在各期的最优税收几乎是相同的。

在这一最优税收法则前提下，本文的研究表明面对不同的价格设定环境，社会资源配置的动态变化不同，政府的最优宏观经济政策动态性质不同。

如果企业的价格调整并不产生实际的价格调整成本，即使政府债券是非状态相趁的且政府收入不变，政府仍然可以运用发行债券和购买货币来满足各期的政府公共支出，于是政府债券和货币实际上吸收了随机冲击对宏观经济的影响。这样各期资源配置以及政府最优政策是各期随机变量的函数，它们的相关性也就完全取决于各期随机变量之间的相关性。

但是在刚性价格的前提下，由于企业对各期的价格调整决策不仅取决于当期成本和市场情况，而且也取决于其他对将来成本发生和市场需求的预期，所以对于灵活价格的情形，政府在做出最优选择时面临新的约束条件——附加预期的菲利普斯曲线，该曲线定义了通货膨胀变化和产出缺口之间的关系。通过对附加预期菲利普斯曲线的分析，我们知道因为政府政策对未来通货膨胀预测是不确定的，而且政府债券是非状态相趁的，这样在面对不同状态下的随机冲击时，如果政府税收政策仍然完全取决于当期的随机变量，且保持周期平滑，那么显然政府的铸币收入以及债券发行量不可能为政府提供完全的保险。由于考虑到对将来经济变化的预期，政府的最优税收政策是关于当期随机冲击以及过去随机变量发生历史的函数。也就是说，对经济主体进行战争之类的冲击之后，因为企业对价格的调整是基于预期到政府债券和货币收人可能为未知的公共消费支出提供完全的保险，所以政府唯一的选择是永久性地提高税收水平和债券发行量。这一政策的变化显然会造成社会福利的永久性损失。此外，当经济体面临繁荣时期时，政府相应地会永久性地提高税收水平，从而社会福利水平从这一刻开始永久性地增加。

本文证明在刚性价格情况下，政府最优货币政策必须保证通货膨胀率的变化基本上接近于零。附加预期的菲利普斯曲线表明，政府选择税收政策和货币政策时，必然要考虑通货膨胀是否应该变化。对于这一问题的权衡取决于两个方面的考虑。一方面，因为财政扭曲税造成了社会资源配置的非最优性，所以当面对经济周期时，政府希望通过不被经济个体预期到的通货膨胀从经济个体手中获得一次性总量名义财富转移；另一方面，由于企业价格调整真实成本的存在，通货膨胀的变化必然造成价格刚性的产生，从这种意义上说，通货膨胀的变化也会产生社会资源的非最优配置。所以中央银行在选择最优货币政策时必须权衡上述这样一个矛盾。本文通过一定拉姆齐问题的递归性质证明，中央银行最优货币政策使得各期的通货膨胀是随机变量发生历史的函数，这样通货膨胀的变化是序列相关的，甚至各期的通货膨胀保持稳定而不发生变化。

本文的结构如下：第二部分考查消费者最优行为、政府最优行为、企业最优行为以及市场出清条件，从而建立动态一般均衡模型，并且通过边际条件定义了均衡配置结果；第三部分通过构建拉姆齐问题分析政府对宏观经济政策的选择，我们通过资源约束条件，可实施约

\[4 \quad \text{Marchet, Sargent, and Seppälä (2000)假设没有货币存在，所以当政府债券不是状态相成的时候，政府税收政策是周期相关的。} \]
束条件以及附加预期的菲利普斯曲线定义了一般情况下的社会最优资源配置结果和最优政策；第四部分通过拉格朗日方法分析在灵活价格调整情况下，最优资源配置结果以及最优政策的动态性质；第五部分运用递归方法讨论在刚性价格调整情况下，最优资源配置结果以及最优政策的动态性质；第六部分总结了文章的基本结论，并从三个角度对本文的模型做出扩展。

二、动态一般均衡

假定经济体无限期发展，在每个时期都面临着随机变量 \(\sigma_t \in \sum \) 的冲击，设 \(\sigma' = (\sigma_0, \sigma_1, \cdots, \sigma_t) \) 表示到 \(t \) 期为止随机冲击的实现序列。在各期中，政府消费和企业的生产技术受到随机变量的冲击，于是政府消费和生产技术是关于随机变量的函数，设 \(t \) 期的政府消费 \(g_t = g(\sigma_t) \)，生产技术 \(s_t = s(\sigma_t) \)。考虑到与现实经济中接近的情况，我们假定政府的政策工具是关于状态随机变量的函数，其中 \(t \) 期的劳动收入税率 \(t' = t'(\sigma_t) \)，企业利润税税率 \(t'' = t''(\sigma_t) \)，消费税率 \(c' = c'(\sigma_t) \)，货币供给 \(M_t = M(\sigma_t) \)。

最后，我们假定经济体中只有一个代表性消费者，但是包含无限数量的企业，每个企业生产一种非耐用的中间品，且各个企业生产的产品不同质，这样我们可以假定企业拥有市场力量。记企业 \(i \in [0, 1] \) 生产的产品为 \(i \)。

下面我们将综合考査消费者最优行为、政府最优行为、企业最优行为以及市场出清条件，从而定义动态一般均衡。

（一）消费者行为

假定代表性消费者的偏好定义在各期消费和劳动的基础之上，我们用如下期望效用函数来表示消费者的偏好:

\[
U = E_0 \left\{ \sum_{t=0}^{\infty} \beta^t u(C_t, L_t) \right\}
\] (1)

其中 \(\beta \in (0, 1) \) 表示贴现因子，\(L_t \in (0, 1) \) 表示 \(t \) 期的劳动量选择，\(C_t \) 表示对所有中间产品消费的 CES 加权:

\[
C_t = \left(\int_0^{L_t} C_t(i)^{\frac{\theta}{\theta - 1}} \, di \right)^{\frac{\theta - 1}{\theta}}, \quad \theta > 1
\]

设 \(P_t = \left(\int_0^{L_t} P_t(i)^{1 - \theta} \, di \right)^{\frac{\theta}{\theta - 1}} \) 表示总量价格指标，其中 \(P_t(i) \) 表示第 \(i \) 种产品的价格。假定单期效用函数 \(u(\cdot) \) 是关于消费的增函数，关于劳动的减函数，严格凹，二阶连续可微且关于消费和劳动弱可分可加。

在 \(t \) 期，消费者在观察到随机变量 \(\sigma_t \) 实现之后，期初的名义财富购买在该期对所有企业股票的持有份额 \(A_t(i) \)，其价格为 \(a_t(i) \)；选择对各种产品的消费量 \(c_t(i), \forall i \in [0, 1] \)。在期末时，消费者选择将所有财富进行分配。首先，他选择一部分财产作为 \(t+1 \) 期的货币持有量 \(M_{t+1}(\sigma_{t+1}) \)；这部分资产得不到任何的资产回报；其次，购买单期到期债券 \(B_{t+1}(\sigma_{t+1}) \)；在 \(t+1 \) 期这些债券可以交换 \(R_{t+1} B_{t+1} \) 单位的货币（我们假定这种债券的回报率为非状态相依的，即
R_{t+1}并不取决于 $t+1$ 期随机状态 a^{t+1} 的实现；最后，购买 $Z_{t+1}(a^t)$ 单位的状态机有价证券，同样假定这种有价证券是单期到期的，且其价格为 $r_{t+1}(a^{t+1})$（这一价格取决于未来随机状态 a^{t+1}）。在 $t+1$ 期，这些有价证券可以兑换成 Z_{t+1} 单位的货币。从上述资源配置状态，我们可以知道在 t 期到期，消费者的财富来源于他在当年的税前劳动收入、税后利润分红、债券收益、股票溢价以及货币持有量。因此，我们得到消费者面临的预算约束

$$M_{t+1} + B_{t+1} + E_r r_{t+1} Z_{t+2} + \int_0^1 A_t(i) a_t(i) d(i)$$

$$\leq M_t + R_t B_t + Z_t - (1 + \tau_t) \int_0^1 P_t(i) c_t(i) d(i) + (1 - \tau_t) W_t l_t$$

$$(1 - \tau_t) \int_0^1 A_t(i) d_t(i) d(i) + \int_0^1 A_{t+1}(i) a_{t+1}(i) d(i)$$

(2)

其中 W_t 表示劳动的名义工资率，假定劳动力市场是竞争性的；$d_t(i)$ 表示企业 i 在 t 期的名义利润。这里我们假定统一消费税 τ°。

进一步，我们假定消费者之所以放弃部分资本收益而持有货币，是因为消费品的购买必须通过现金支付。由此，消费者面临 CIA 约束

$$(1 + \tau_t) \int_0^1 P_t(i) c_t(i) d(i) \leq M_t$$

(3)

显然，给定政府宏观经济政策 $\{M_t, B_t, Z_t, \tau_t, \tau^\circ, \tau^\circ_t\}_{t=0}^\infty$，价格系统 $\{W_t, P_t, r_t, r_{t+1}, \}$，初始财富 $M_0 + Z_0 + R_0 B_0 = 0$，消费者的最优行为是在满足预算约束 (2) 和 CIA 约束 (3) 的前提下，选择资源配置序列 $\{c_t(i)\}_{t=0}^\infty, \{A_t(i)\}_{t=0}^\infty$，$M_{t+1}, B_{t+1}, Z_{t+1}$ 极大化其效用水平 (1)。我们在附录中给出了这一问题的求解过程，并且得到刻画消费者最优行为的六个边际条件。

第一，按照 Dixit 和 Stiglitz (1977) 的思想，消费者对于产品 i 的需求函数

$$\frac{c_t(i)}{C_t} = \left[\frac{P_t(i)}{P_t} \right]^{-\delta}$$

(4)

第二，消费和劳动的边际替代率等于实际工资与相应税率的比率的乘积

$$\frac{u_c}{u_o} = \frac{W_t}{P_t} \frac{(1 - \tau^\circ_t)}{R_t (1 + \tau_t)}$$

(5)

这里 $u_c = u_c(C_t, l_t)$ 表示消费边际效用，$u_o = u_o(C_t, l_t)$ 表示劳动边际效用。

第三，定义最优跨期选择的欧拉方程，

$$u_c = R_t E_t \left[\frac{\beta u_{c+1}}{\pi_t (1 + \tau_{t+1})} \right]$$

(6)

其中 $\pi_{t+1} = \frac{P_{t+1}}{P_t}$ 表示 $t+1$ 期的通货膨胀。

第四，有价证券最优定价条件。

$$r_{t+1} \pi_{t+1} = \frac{\beta u_{c+1}}{u_c} \frac{(1 + \tau_t)}{(1 + \tau_{t+1})}$$

(7)

(5) 按照 Atkinson and Stiglitz (1972) 的结论，当消费者的偏好关于消费和劳动可分可加，且关于各种消费品相似时，对各种消费品征收的最优税率相同。
第五，无套利条件。根据前面关于有价证券和非状态机权无风险债券的说明，我们知道有价证券的期望价格为

$$ R_i = \frac{1}{E_{[\tau_{r+1}^i]}}, \quad (8) $$

否则，消费者可以通过有价证券和无风险债券之间的交易获取套利收益。同时，为防止消费者无限数量地持有货币，我们假定

$$ R_i \geq 1 $$

第六，企业股票的定价条件。这一条件表明

期企业资产价值等于

期企业税后利润与

期企业期望资产价值之和。

$$ \frac{\mu_c}{(1 + \tau_i^i)} a_i(i) = (1 - \tau_i^i) d_i(i) \left(\frac{\mu_c}{(1 + \tau_i^i)} R_i \right) + E_{[\tau_{r+1}^i]} \beta u_{c+i} \left(\pi_{r+1}^i R_{r+1}^i (1 + \tau_{r+1}^i) a_{r+1}^i(i) \right) \quad (9) $$

（二）政府行为

政府面临外生的政府消费序列 G_i 对于任何时期

和任意的状态实现 σ,

且政府消费不影响社会生产。同样假定政府消费复合商品，满足

$$ G_i = \left[\int_0^{\tau_i} g_i(i) \tau_i \, di \right] $$

给定各种中间产品的价格 $P_i(i)$ 以及外生变量 G_i，政府选择对中间产品的消费量 $g_i(i)$ 以最小化政府支出。由此得到政府对中间产品的需求

$$ g_i(i) = \left[\frac{P_i(i)}{P_i} \right]^{-\theta} $$

政府通过财政政策和货币政策序列 $B_i, Z_i, \tau_i, \tau_i^i$ 等获取资源以满足自身消费需求和偿还消费者购买债券的本息，这种政府面临的预算约束是

$$ M_{r+1} + B_{r+1} + E_{r+1} r_{r+1} Z_{r+1} \geq M_i + R_i B_i + Z_i + \int_0^{\tau_i} P_i(i) g_i(i) \, di - \tau_i \int_0^{\tau_i} P_i(i) c_i(i) \, di $$

$$ - \tau_i^i W_i \tau_i - \tau_i^i \int_0^{\tau_i^i} A_i(i) d_i(i) \, di $$

（三）企业行为

经济体中存在无限数量的垄断竞争企业，他们均匀地分布在区间 $[0, 1]$ 上，每个企业在竞争性劳动力市场上购买生产要素—劳动，生产不同质的中间产品，且劳动是唯一的生产要素。企业 i 的生产函数是

$$ Y_i(i) = s_i l_i(i) $$

其中 $l_i(i)$ 表示在

期，当随机冲击实现之后，企业的劳动雇佣量。上式生产函数定义了企业对中间产品 i 的供给。根据消费者和政府的最优选择，中间产品 i 的需求 $Y_i(i)$ 与总量产出 Y_i 之间的关系是

$$ Y_i(i) = \left(\frac{P_i(i)}{P_i} \right)^{-\theta} Y_i $$

设

$$ P \left(\frac{P_i(i)}{P_i} \right) = \left(\frac{P_i(i)}{P_i} \right)^{-\theta} $$

考虑到垄断竞争的特性，我们得到

$$ \frac{d \ln P_i(i)}{d \ln Y_i(i)} = -\frac{1}{\theta}, \quad \text{即} \quad \theta \text{ 表示中间产品的需求弹性。} $$

93
因为经济体中垄断竞争的特性，那么给定时刻 \(t \) 随机状态 \(\sigma \) 的实现，劳动工资率以及政府政策，企业 \(i \) 选择产品的价格水平 \(P_i(i) \) 最大化企业市场价值的现值。根据企业的股票定价方程(9)，企业的最大化目标定义为

\[
\max_{r(i)} \left(\frac{u_c}{(1 + \tau)^{R_i}} \right) a_r(i) = \max_{r(i)} \left(1 - \tau^d \right) d_r(i) \frac{u_c}{(1 + \tau)^{R_i}}
\]

\[
+ E_r \left[\frac{\beta u_c}{(1 + \tau)^{R_{r+1}}} a_{r+1}(i) \right]
\]

另一方面，类似于 Rotemberg(1982)，我们假定企业在各期做出价格调整时面临着真实“菜单成本”，这一价格调整成本是价格变化率的二次型函数：

\[
\text{真实价格调整成本} = \frac{\delta}{2} \left(\frac{P_i(i)}{P_{r-1}(i)} - 1 \right)^2
\]

这样我们在经济环境中引入了价格刚性的概念，其中 \(\delta \) 测度了价格刚性的程度，\(\delta \) 越大则价格刚性程度越大，当 \(\delta = 0 \) 时，企业可以灵活地调整其产品定价。根据这一假定，我们可以得到在 \(t \) 期，企业 \(i \) 的即期名义利润为

\[
d_r(i) = P_i(i) Y_r(i) - W_r l_r(i) - P_r \frac{\delta}{2} \left(\frac{P_i(i)}{P_{r-1}(i)} - 1 \right)^2
\]

将企业面临的需求函数和利润函数代入到企业目标函数，我们得到企业最优化行为等价于

\[
\max_{r(i)} \left(\frac{(1 - \tau^d) u_c}{(1 + \tau)^{R_i}} \right) P_i(i) \left(\frac{P_i(i)}{P_r} \right)^{-\theta} Y_r(i) - W_r \left(\frac{P_i(i)}{P_r} \right)^{-\theta} Y_r(i) - \frac{\delta P_r}{2} \left(\frac{P_i(i)}{P_{r-1}(i)} - 1 \right)^2
\]

\[
+ E_r \left[\frac{\beta(1 - \tau_{r+1}) u_c}{(1 + \tau_{r+1}) \pi_{r+1} R_{r+1}} P_{r+1}(i) \left(\frac{P_{r+1}(i)}{P_{r+1}} \right)^{-\theta} Y_{r+1}(i)
\]

\[
- W_{r+1} \left(\frac{P_{r+1}(i)}{P_{r+1}} \right)^{-\theta} Y_{r+1}(i) - \frac{\delta P_{r+1}}{2} \left(\frac{P_{r+1}(i)}{P_{r+1}} - 1 \right)^2 \right]
\]

因为企业在 \(t \) 期的定价决策只会产生一期的滞后性，所以我们这里并没有考虑 \(t + 2 \) 期后企业市场价值的预期。对上述问题求解一阶条件得到

\[
\frac{(1 - \tau^d) u_c}{(1 + \tau)^{R_i}} \left[(\theta - 1) \left(\frac{P_i(i)}{P_r} \right)^{-\theta} Y_r(i) - \theta W_r \left(\frac{P_i(i)}{P_r} \right)^{-\theta} Y_r(i) + \frac{\delta P_r}{2} \left(\frac{P_i(i)}{P_{r-1}(i)} - 1 \right) \right]
\]

\[- E_r \left[\frac{\beta(1 - \tau_{r+1}) u_c}{(1 + \tau_{r+1}) \pi_{r+1} R_{r+1}} P_{r+1}(i) \left(\frac{P_{r+1}(i)}{P_{r+1}} \right)^{-\theta} Y_{r+1}(i)
\]

\[- W_{r+1} \left(\frac{P_{r+1}(i)}{P_{r+1}} \right)^{-\theta} Y_{r+1}(i) - \frac{\delta P_{r+1}}{2} \left(\frac{P_{r+1}(i)}{P_{r+1}} - 1 \right)^2 \right] = 0
\] \((11) \)

(11) 式表明，因为企业在定价时必须考虑到价格调整成本，所以企业的定价并不能保证其真实边际收益 \(\frac{P_i(i)}{P_r} + P \left(\frac{P_i(i)}{P_r} \right) \left(\frac{P_i(i)}{P_r} \right) \) 等于其真实边际成本 \(m c_r(i) = \frac{w_r}{s_r} \)，其中 \(w_r = \frac{W_r}{P_r} \) 表示真实工资率。

因为经济中的每个企业都面临相同的宏观经济政策，相同的生产成本以及相同的劳动工资率，所以我们可以研究对称的均衡结果，即每个企业的定价策略相同。于是，在各期总量价格水平 \(P_t = P_i(i) \), \(\forall i \in [0, 1] \)。而且，每个企业雇佣的劳动量相同，即 \(l_t(i) = l_t \)，给定所有企业的均衡选择结果相同，根据企业的定价方程(11)，我们可以得到下面附加预期的菲利普斯曲线：

\[
(\pi_r - 1) \pi_r = \frac{\theta l_t}{\delta} \left(\frac{w_r}{s_r} - \frac{1}{\theta} \right) + \beta E_r \left[\frac{u_c}{(1 + \tau_{r+1}) (1 + \tau) R_{r+1}} \left(\frac{P_i(i)}{P_r} (\pi_{r+1} - 1) \pi_{r+1} \right) \right]
\] \((12) \)
（四） 市场出清

因为我们假定经济中只有代表性消费者存在，市场出清要求消费者购买的政府债券与政府发行的债券数量相等，且消费者拥有的企业的全部产权，即 \(A(i) = 1 \)，同时要求资源约束成立：

\[
\frac{\sigma}{2}(\pi - 1)^2 + C_i + G_i = Y_i = s_i t_t
\]

到目前为止，我们定义了经济体基本结构，由此，我们可以进一步定义垄断竞争均衡。

定义 1 给定消费者的初始财富 \(M_0 + Z_0 + R_0 B_0 = 0 \)，外生政府消费 \(G_i \) 以及技术冲击 \(\{s_i\}_{i=0}^\infty \)，经济的垄断竞争均衡是指消费者的资源配置序列 \(\{c_i(i)\}_{i=0}^\infty, \{A_i(i)\}_{i=0}^\infty, \{M_{i+1}, B_{i+1}, Z_{i+1}\}_{i=0}^\infty \) 、政府宏观经济政策序列 \(\{M_i, B_i, Z_i, \tau_i', \tau_i'', \tau_i''\}_{i=0}^\infty \) 、价格系统序列 \(\{W_i, R_i, r_{i+1}, a_i(i)\}_{i=0}^\infty, \{P_i(i)\}_{i=0}^\infty, \{P_i\}_{i=0}^\infty \) 满足给定政府宏观经济政策序列 \(\{M, B, Z, \tau', \tau'', \tau''\}_{i=0}^\infty \)，

1) 消费者资源配置序列 \(\{c_i(i)\}_{i=0}^\infty, \{A_i(i)\}_{i=0}^\infty, \{M_{i+1}, B_{i+1}, Z_{i+1}\}_{i=0}^\infty \) 在满足预算约束 (2) 和 CIA 约束 (3) 的前提下，最大化其一生效用水平的贴现值 (1)；

2) 债券价格序列 \(\{r_i, r_{i+1}\}_{i=0}^\infty \) 满足 (7) 式和 (8) 式；

3) 企业股票价格序列 \(\{a_i(i)\}_{i=0}^\infty \) 满足 (9) 式；

4) 企业产品价格以及总需求水平序列 \(\{P_i(i)\}_{i=0}^\infty, \{P_i\}_{i=0}^\infty \) 满足 \(P_i = P_i(i), \forall i \in [0, 1] \) 以及附加预期的菲利普斯曲线 (12)；

5) 所有市场出清。

三、 拉姆齐均衡

本节我们讨论政府对宏观经济政策的选择。在上面我们对垄断竞争均衡的定义中，消费者在最优资源配置以及企业在最优定价策略时，都是假定政府的宏观经济政策给定。而在事实上，现实的政治制度在制定宏观经济政策时必须考虑到经济个体对宏观经济政策的理性反应。根据这一思想，我们在第一节中定义类似博弈纳什均衡的拉姆齐问题，而且根据拉姆齐问题的结构特征，我们可以看到政府财政政策工具的等价性。

为方便分析，我们记政府宏观经济政策为 \(\omega = (M_i, B_i, Z_i, \tau_i', \tau_i'', \tau_i''')_{i=0}^\infty \)，消费者的资源配置序列 \(X = \{c_i(i)\}_{i=0}^\infty, \{A_i(i)\}_{i=0}^\infty, \{M_{i+1}, B_{i+1}, Z_{i+1}\}_{i=0}^\infty \) ，企业的价格决策序列 \(P = (P_i(i)\}_{i=0}^\infty, \omega \) 。假定政府的宏观经济政策是时间一致的，也就是说政府在经济开始的初期根据对消费者和企业反应策略的预期，制定宏观经济政策 \(\omega \)，并且政府向消费者和企业承诺永久性地实施这一政策。根据垄断竞争均衡的定义，消费者和企业在各期的最优选择是政府宏观经济政策的函数，即 \(x(\omega) = x(\sigma | \omega) \) 、\(\rho(\omega) = \rho(\sigma | \omega) \) 。根据序贯理性的思想，在消费者和企业最优反应的情况下，政府选择经济政策最大化社会福利。由此我们可以定义拉姆齐均衡。

定义 2 如果下列条件成立，则政府宏观经济政策 \(\omega \) ，消费者的资源配置法则 \(x(\omega) \)，企业定价法则 \(\rho(\omega) \) 构成经济的拉姆齐均衡。

1) 消费者效用最大化：对于任意给定的经济政策 \(\omega' \)，消费者的资源配置 \(x(\omega') \) 在满足预
算约束(2)和CIA约束(3)的情况下最大化消费者的效用函数(1);
2) 企业利润最大化: 对于任意给定的经济政策\(\omega'\), 企业定价决策\(p(\omega')\)满足附加预期的菲利普斯曲线(12);
3) 政府最大化社会福利: 给定消费者决策法则\(x(\omega)\)和企业决策法则\(p(\omega)\), 宏观经济政策\(\omega\)在满足政府预算约束(10)的情况下, 最大化社会福利函数
\[
E_0 \left\{ \sum_{t=0}^{\infty} \beta^t u(C_t, l_t(\omega)) \right\}
\]
显然，我们很难通过垄断竞争均衡的一阶条件来刻画政府的最优行为以及拉姆齐资源配置结果，所以我们下面的分析将建立在最优税收的基本方法基础之上。在完全竞争的框架下，该方法通过两个简单的条件来刻画满足竞争均衡的资源配置集：资源约束条件和可实施条件。前面我们已经定义了资源约束条件, 可实施条件是指消费者的预算约束, 其中消费者和企业选择的边际条件替代了政府的宏观经济政策和价格系统。这样, 上述两个约束条件仅仅取决于消费者的资源配置结果。然而, 在我们的分析框架中, 由于政府宏观经济政策的多维性以及经济的垄断竞争特性, 所以我们不可能用资源配置集来替代所有的政策工具, 另一方面, 由于垄断竞争的经济特性, 在我们的分析框架中必须考虑到企业的定价决策边际条件。

在对称垄断竞争均衡条件下，由于市场需求以及所有企业选择的产品价格相同，所以\(A_c(i)=1, d_c(i)=D_t\), 且\(c_g(i)=C_t, g_c(i)=G_t \forall i \in [0, 1]\)。这样，给定初始财富\(M_0+Z_0+R_0B_0=0\)，对于\(t \geq 1\)，消费者面临的预算约束可以表示成
\[
M_{t+1} + B_{t+1} + E_r r_{t+1} Z_{t+1} \leq M_t + R_t B_t + Z_t - (1 + \tau_t) P_t C_t + (1 - \tau_t) W_t l_t + (1 - \tau_t) D_t
\]
政府面临的预算约束为
\[
M_{t+1} + B_{t+1} + E_r r_{t+1} Z_{t+1} \geq M_t + R_t B_t + Z_t + P_t G_t - \tau_t P_t C_t - \tau_t W_t l_t - \tau_t D_t
\]
其中
\[
D_t = P_t Y_t - W_t l_t - P_t \frac{\delta}{2} (\pi_t - 1)^2
\]
根据消费者和政府的预算约束以及消费者最优选择的边际条件, 我们得到下面的性质:

性 质 1 (拉姆齐问题) 在拉姆齐均衡中，消费者在各期选择的消费 \(C_t\) 和劳动 \(l_t\)，企业选择的价格水平 \(\pi_t\) 是下面拉姆齐配置问题的解：
\[
\max_{[C_t, l_t, \pi_t]} E_0 \left\{ \sum_{t=0}^{\infty} \beta^t u(C_t, l_t) \right\}
\]
受下面的条件约束:
1）资源约束：
\[
\frac{\delta}{2} (\pi_t - 1)^2 + C_t + G_t = Y_t = s_t l_t
\]
2）可实施约束：
\[
E_0 \sum_{t=0}^{\infty} \beta^t \left(u_c C_t + u_l l_t - u_c \mathbb{E}_t \left[s_t l_t \left(\frac{w_t}{s_t} - 1 \right) + \frac{\delta}{2} (\pi_t - 1)^2 \right] \right) = 0
\]

3) 附加预期的菲利普斯曲线，

\[(\pi_t - 1)\pi_t = \frac{1}{\delta} \left(\frac{s_t}{s} - \frac{\theta - 1}{\theta} \right) + \beta E_t \left[\frac{u_t}{u_t} - \frac{\sum_{r=t}^{\infty} V_{r+1} (\pi_{r+1} - 1) \pi_{r+1}}{R_t (1 - \pi_r)} \right] \]

其中，$\pi_t = \frac{1 - \pi_t^*}{R_t (1 - \pi_t^*)}$。

证明 根据拉姆齐均衡的定义，给定消费者和企业的决策法则 $x(\omega), \pi(\omega)$，政府对宏观经济政策的选择必须满足政府的预算约束。显然，当资源约束条件 (13) 和消费者预算约束条件 (14) 同时满足时，由于所有市场出清，所以政府预算约束 (15) 成立。

进一步地，我们根据拉姆齐均衡边界条件来描述消费者的预算约束条件。在 (14) 式的两边同时乘以消费者的真实财富边际价值的现值 $\beta^{\frac{\lambda_t}{P_t}}$，并对所有时期进行预期加总，根据债券选择边际条件 (A5), (A6)，非通货膨胀的组合条件 (A8) 以及初始财富条件，我们得到

\[E_0 \left\{ \sum_{i=0}^{\infty} \beta^{\frac{\lambda_t}{P_t}} \left[P_t C_t (1 + \pi_t) - W_t L_t (1 - \pi_t^*) - D_t (1 - \pi_t^*) + M_t \left(\frac{q_t}{\alpha_{t+1}} - 1 \right) \right] \right\} = 0 \]

这里，$q_t = \prod_{i=1}^{t} r_i$，且 $q_0 = 1$，表示货币价值的贴现率。这样根据消费选择一阶条件 (A9)，期内最优选择条件 (5)，资产定价条件 (8)，CIA 约束 (3) 以及企业名义利润的定义，得到可实施约束 (16)。同时企业的最优定价策略使得附加预期的菲利普斯曲线 (12) 成立。

从性质 1 的证明，我们可以看到可实施约束条件事实上表示考虑到最优选择，消费者面临的一生的预算约束。另外我们注意到，在政府采取的财政政策中只有它们相互之间的比例关系 $\frac{1 - \pi_t^*}{R_t (1 - \pi_t^*)}$ 才会影响到经济体中的资源配置。从这一角度来讲，给定这一比例不变，上述三种财政工具任何形式和数量的组合都是等价的。

到目前为止，我们注意到在刚性价格调整的情况下，拉姆齐问题必须满足三个约束条件：资源约束条件、可实施约束条件以及附加预期的菲利普斯曲线。这一定义显然不同于 Lucas and Stokey (1983)，Chari, Christiano and Kehoe (1991) 以及关于拉姆齐问题约束条件的定义，由于在他们的模型中假定经济体是完全竞争的，所以拉姆齐资源配置只面临着两种约束：资源约束和可实施约束。在下面一节的讨论中，我们将看到即使在垄断竞争的环境下，只要企业的价格调整是灵活的，拉姆齐问题的约束条件同样只用考虑资源约束和可实施约束。

四、灵活价格调整与资源配置动态性质

（一）政策的基本动态性质

根据假定条件，如果企业灵活定价，那么在进行价格调整时他并不产生任何的“菜单成本”，即$\delta = 0$。根据企业股票定价方程(9)，那么企业的最优定价满足于：

$$\max_{\Pi_t(i)} \left[P_t(i)Y_t(i) - W_t(i) \right]$$

s. t. $Y_t(i) = s_t(i)$

$$Y_t(i) = \left(\frac{P_t(i)}{P_t} \right) Y_t$$

同样考虑对称均衡的情形，给定任意时期和任意的随机变量实现，企业的最优定价法则满足

$$P_t(i) = P_t = \frac{\theta}{\theta - 1} \frac{W_t}{s_t}$$

这样也就意味着在价格灵活调整的情况下，企业的最优定价只是名义边际成本的一个固定上加，其$\frac{\theta}{\theta - 1} > 1$ 表示加成。根据 Friedman(1968) 的定义，给定完全竞争的工资水平，于上述最优价格水平下，经济体的产量产出水平即为自然率产出，这时真实工资水平 $w_t = s_t \frac{1}{\theta} \theta - 1$. 而且根据上述最优定价方程，我们可以知道通货膨胀的变化取决于随机冲击的变化。由此，我们可知在灵活价格调整时，给定消费者和企业的最优行为，拉姆齐问题变成：

$$\max_{[C_t, l_t]} E_0 \left\{ \sum_{t=0}^{\infty} \beta^t u(C_t, l_t) \right\}$$

受约束于：

1) 资源约束：

$$C_t + G_t = s_t l_t$$ \hspace{1cm} (17)

2) 可实施约束：

$$E_0 \sum_{t=0}^{\infty} \beta^t \left(u_c C_t + u_l l_t + u_{\Xi} \Xi_t \right) \left[s_t l_t \left(\frac{\theta - 1}{\theta} - 1 \right) \right] = 0$$ \hspace{1cm} (18)

此时，由于企业的价格调整并不耗费社会资源，所以全部社会产出都用于私人消费和政府消费；另外，由于企业的即期定价并不影响企业资产的未来市场价值，所以我们可以将企业的最优定价行为纳入到可实施约束中。对上述拉姆齐问题求解，我们得到上面的性质成立。

性质 2 如果企业可以灵活地调整其产品价格水平，那么给定任意时期和任意的随机变量实现，拉姆齐消费配置 C_t, 劳动配置 l_t, 通货膨胀 π_t 以及政府财政政策 Ξ_t 仅仅是由政府消费 G_t 和技术冲击 s_t, 的函数，即

$$C_t = C(G_t, s_t); \quad l_t = l(G_t, s_t); \quad \Xi_t = \Xi(G_t, s_t); \quad \pi_t = \pi(G_t, s_t), \forall t, s^t$$

而且，政府财政工具比率 $\frac{1-\gamma^t}{R_t(1-\gamma^t)}$ 的解唯一，也取决于政府消费和财政冲击，且给定比率不变，这三种财政工具等价。

证明 首先，我们通过拉格朗日方法推导上述拉姆齐问题的一阶条件。设 γ 表示可实施约束(18) 上的拉格朗日乘子，由资源约束(17)，我们定义拉格朗日函数：

$$L = E_0 \left\{ \sum_{t=0}^{\infty} \beta^t \left[u(C_t, \frac{1}{s_t} (C_t + G_t)) + \gamma h \left(C_t, \frac{1}{s_t} (C_t + G_t), \Xi_t \right) \right] \right\}$$

98
其中，\(h\left(C_t, \frac{1}{s_t}(C_t + G_t), \Xi_t\right) = u_c c_t + u_i \ell_t + u_c \Xi_t \left[s_i \ell_t \left(\frac{\theta - 1}{\theta} - 1 \right) \right] \)

\[= u_c \left[s_i \ell_t \left(\frac{1 - \frac{\theta - 1}{\theta}}{R_t(1 + \varepsilon_t)} \right) - \frac{1}{\theta} \right] \]

表示在任意时期，以即期消费者边际效用测度的政府剩余，上边第二个等式用到了消费者的期内最优选择条件(5)。

求解一阶条件得到

\[s_i u_c + u_i + \gamma(s_i h_c + h_i) = 0 \quad (19) \]

\[h_k = \gamma u_c \left(C_t + G_t \right) \left(\frac{\theta - 1}{\theta} - 1 \right) = 0 \quad (20) \]

根据(20)式以及隐函数定理，我们可以知道对于任意时期，拉姆齐消费配置是政府消费、技术冲击以及拉格朗日乘子的函数，即 \(C = C(G_t, s_t; \gamma) \)。进一步，将消费决策函数代入到一阶条件(19)和资源约束(17)中，根据隐函数定理，同样得到财政工具的比重。劳动配置是关于上述三个变量的函数，\(\ell_t = \ell(G_t, s_t; \gamma), \Xi_t = \Xi(G_t, s_t; \gamma) \)。将消费、劳动以及财政工具的配置法则代入到实施约束(18)中，我们进一步得到拉格朗日乘子是关于政府消费和技术冲击的函数。由此我们可以证明在灵活价格调整的情况下，给定任意时期和随机变量的实现，消费者的消费配置和劳动配置、政府的财政工具是政策政府消费和技术冲击的函数。

下面，我们证明政府财政工具的等价性。根据企业最优定价策略，我们可知在灵活价格调整时，期内选择法则(5)等价于 \(\frac{u_i}{u_c} = \frac{\theta - 1}{\theta} \left(\frac{1 - \varepsilon_t}{1 + \varepsilon_t} \right) \)。给定消费配置和劳动配置，

\[\frac{\left(1 - \varepsilon_t\right)}{R_t(1 + \varepsilon_t)} \] 的解唯一。这样在保持这一比例不变的情况下，三种财政工具的任意搭配并不影响经济体的资源配置。所以，在这一意义上，消费税、收入税以及政府债券利率水平等价。此外，由于消费配置和劳动配置是当期政府消费和技术冲击的函数，所以给定任意时期和任意的随机变量实现，\(\frac{\left(1 - \varepsilon_t\right)}{R_t(1 + \varepsilon_t)} \)也仅仅是当期政府消费和技术冲击的函数。

性质2 表明在灵活价格调整时，经济体中各期的最优资源配置以及政府的财政政策工具仅仅取决于当期的政府消费和技术冲击。也就是说，在给定技术冲击不变时，政府宏观经济政策的动态相关性质取决于政府各期消费支出的动态相关性质（当然，如果我们将资本积累考虑到模型中，这一结论一般不会成立，因为资本积累涉及跨期最优选择）。比如，如果政府消费支出服从独立同分布，那么其财政政策也将服从独立同分布；如果政府消费支出服从随机游走，那么财政政策也会服从随机游走。

另外，我们可以知道当经济体受到随机冲击时，假定政府可以通过调整税收政策来实现最优的资源配置。但是，这样在现实经济中我们注意到政府并不是频繁地调整税收政策。幸运的是，根据政府财政政策的等价性，通过中央银行对名义利率的调整同样可以实现最优的资源配置。事实上，上述理论分析的结果不仅在现实经济中得到了广泛的应用，而且，这种简单的利率调节法则也是新凯恩主义对传统 IS-LM 模型的发展。
（二）一个例子

下面我们通过例子对这一理论结果给出说明，并且说明政府最优财政政策如何平滑其公共消费支出。

我们假定在一个经济体中战争与和平交替出现，在不同时期政府消费支出为

\[G_t = \begin{cases} G, & t = 2N \\ 0, & t = 2N + 1 \end{cases} \]

为大于等于 0 的整数

简单起见，我们假定技术冲击是常数，即 \(s_i = 1 \)。并且假定政府征收的利润税为 0。根据性质 2，由于财政政策工具的等价性，我们假定 \(R_t = 1 \)。并且假定政府铸币收入为 0。这样，政府通过发行政府债券和征收劳动收入税来满足政府公共消费支出。性质 2 表明政府将在和平时期取得一定数量的劳动收入税，以弥补战争时期的财政赤字。

首先，我们证明在和平时期劳动收入税大于 0。考虑到资源约束条件（17），和平时期拉姆齐问题一阶条件（19）可以表示成

\[(1 + \gamma) [u_c(0) + u_r(0)] + \gamma (\theta - 1) u_c(0) + \gamma C \left[\theta - 1 \right] u_c(0) + u_r(0) = 0\]

这里，因为消费者的效用函数关于消费和劳动可分可加，所以 \(u_c(0) = 0 \)。根据效用函数的严格凹性，即 \(u_c(0) < 0, u_r(0) < 0 \)，以及效用函数的单调性 \(u_c(0) > 0, u_r(0) > 0 \)

格成立。根据消费者期内选择法则（5），我们得到

\[\frac{\theta - 1}{\theta} u_c(0) + u_r(0) = \frac{\theta - 1}{\theta} v'(0) u_r(0) \]

所以 \(v'(0) > 0 \)。

由于政府在和平时期的公共消费支出为 0，所以此时政府的税收收入用于偿还战争时期发行的债务。下面我们说明在战争时期，政府出现财政赤字。根据性质 2，各期的资源配置和税收政策仅取决于当期的政府消费。这样，拉姆齐问题中的可实施约束等价于 \(h(G) + \beta h(0) = 0 \)，即

\[u_c(G) \left[\frac{\theta - 1}{\theta} v'(G) l(G) - G \right] + \beta u_c(0) \left[\frac{\theta - 1}{\theta} v'(0) l(G) \right] = 0 \]

也就是说，在战争与和平交替出现的极端情况下，政府任意时期剩余价值的贴现值等于 0。

由于 \(v'(0) > 0 \)，所以在战争情况下，政府剩余 \(u_c(G) \left[\frac{\theta - 1}{\theta} v'(G) l(G) - G \right] < 0 \)。此时，政府通过发行债券来弥补财政赤字，且在战争时期发行的债券总量为

\[B(G) = \left[l(G) - \frac{\theta - 1}{\theta} v'(G) l(G) \right] \]

通过这个例子我们清楚地看到，在面对随机变量的冲击时，不同时期的税收政策之间没有相关性，而且资源配置相对来说比较平滑，而政府债券在这一过程中充当了冲击吸收器的作用。当然，如果考虑到政府的铸币收入，那么货币与债券一样充当了冲击吸收器的作用，这时通货膨胀的变化也就取决于随机变量冲击的变化。

五、刚性价格调整与资源配置动态性质

前一节的分析表明，在灵活价格调整的情况下，政府的最优宏观经济政策基本上与新古典标准框架中的结论相同。但是这些结论受到了大量经济学家的质疑，Mankiw (1987)，

在本节的分析中我们将运用动态规划方法来研究刚性价格情况下最优资源配置和政策的动态性质。Stokey，Lucas and Prescott(1989) 介绍了动态规划在经济模型的运用，并描述了大量具有递归性质的标准经济模型。这些标准的动态模型都满足相同的特征：决策者在各期的行动选择仅仅受到历史变量的影响，而状态变量在将来发生的水平并不影响经济主体的决策。这样根据动态规划的思想，如果一个动态经济模型可以通过递归方式表述，那么也就意味着该模型中决策变量的选择满足贝尔曼法则，这样，t 期的最优决策（控制）变量的选择是状态变量的时间不相关函数。

我们注意到，本文研究的灵活价格模型事实上满足动态规划的标准形式，但是在刚性价格模型中，我们看到由于拉姆齐问题受到附加预期的菲利普斯曲线的约束，将来变量的影响影响了现期决策变量的选择，这样贝尔曼方程不再成立。Marcet and Marimon(1998) 通过将状态变量扩展到包括协状态变量的方法（M-M 方法），构建了贝尔曼方程不成立情况下的递归结构——鞍点函数方程（SPFE）。本节首先回顾了动态规划的标准模型，并运用 M-M 方法求解刚性价格情况下的均衡资源配置结果。

(一) 标准递归模型

Stokey，Lucas and Prescott(1989) 将下面的最优化问题定义为标准的动态规划形式：

$$\max_{\{\bar{a}_{t}\}} E_{0} \sum_{t=0}^{\infty} \beta^{t} f(x_{t}, a_{t}, \sigma)$$ \hspace{1cm} \text{(P0)}

受约束于：给定 x_{0}, σ_{0} 和 $x_{t+1} = \ell(x_{t}, a_{t}, \sigma_{t+1}), a_{t} \in A(x_{t}, \sigma_{t}), t \geq 0$。

其中 σ 表示随机变量，x 表示内生的状态变量，a_{t} 表示选择变量，$A(\cdot \cdot \cdot)$ 定义选择变量的资源约束，转换方程 $\ell(\cdot \cdot \cdot)$ 表示内生状态的变化运动路径。

当上述函数满足标准的假定条件时，上述最优化问题可以表述为递归结构，也就是说，存在一个价值函数 v 使得贝尔曼方程方程成立：

$$v(x, \sigma) = \max_{a \in A(x, \sigma)} \{ f(x, a, \sigma) + \beta E[v(x', \sigma') | \sigma] \}$$

$$\text{s.t.} \quad x' = \ell(x, a, \sigma')$$

我们可以根据标准的动态规划方法来求解上述函数方程，得到一个稳定的决策函数 $a(\cdot \cdot \cdot)$ 满足 $a_{t} = a(x_{t}, \sigma_{t}), \forall t_{t}$。通过这一决策方程，我们可以了解到经济主体在各期的最优决策仅仅取决于当期的随机变量实现，而且各期的最优决策方程相同，与时间不相关。这样，各种随机变量发生情况下的最优决策问题就完全由决策方程 $a(\cdot \cdot \cdot)$ 确定。而且在现代经济学的研究中，人们发展了大量的计算方法来求解决策方程 $a(\cdot \cdot \cdot)$。

我们将这一递归的思想应用到灵活价格环境中，我们用 σ 表示随机变量，x 表示随机冲

\[\text{参考 Stokey，Lucas and Prescott(1989).}\]
击变化的内生政府公共消费和技术冲击组合，α，表示资源配置变量，即消费者在t期的消费和劳动选择，A()表示经济体的可实现约束条件(18)，状态变量的转换路径方程(2)表示资源约束方程(17)。通过这种对应，我们通过递归贝尔曼原理得到的最优决策结论与性质2描述的结果相同。

但如果企业的价格调整是刚性的，我们根据性质1看到在拉姆齐问题中，政府在选择社会资源配置和最优政策时面临着附加预期的菲利普斯曲线：

$$\left(\pi_t - 1 \right) \pi_t = \frac{\delta S_t}{\delta} \left(\frac{\omega_m}{s_t} - \frac{\theta - 1}{\theta} \right) + \beta E \left[\frac{a_{t+1}}{a_t} \Xi_{t+1} \left(\pi_{t+1} - 1 \right) \pi_{t+1} \right]$$

这一条件表明未来选择变量的预期影响到了现期资源配置的结果，这种情形导致在性质1中定义的拉姆齐问题并不满足递归性质，而且，最优的选择变量选择结果也不是时间一致的，也就是说最优的选择结果并不满足 $a_t = a(x_t, \sigma_t)$。

在本节的下面部分我们运用M8-M方法来定义刚性价格调整情况下，拉姆齐问题的递归性质。M8-M方法的基本思想在于，我们将定义在附加预期的菲利普斯曲线这一约束上的拉格朗日乘子作为状态变量，那么拉姆齐问题具有递归性质。

（二）递归鞍点函数方程

递归鞍点方程作为贝尔曼方程的一般形式对于解决跨期动态经济模型具有广泛的应用性，事实上，产业组织理论中的很多最优规制模型以及动态博弈模型都应用了递归鞍点函数方程的方法来构建模型的递归性质。本节我们将递归鞍点函数方程应用到最优货币政策和财政政策的讨论中，了解这一递归方法的基本思想，分析刚性价格情况下的最优货币政策和财政政策。

我们通过三个步骤来定义递归鞍点函数方程，首先我们将说明刚性价格调整情况下拉姆齐问题的非递归性质，然后我们通过拉格朗日方法以及重复预期定理定义递归的鞍点问题(SPP)，最后，我们根据M8-M的思想定义鞍点函数方程，从而确定原拉姆齐问题的递归形式。

为方便后面的分析，我们将拉姆齐问题表述为

$$\max_{\{C_t, \pi_t, \Xi_t, G_t, s_t \}} E_t \left\{ \sum_{t=0}^{\infty} \beta^t H_t(C_t, \pi_t, \Xi_t, G_t, s_t, \zeta) \right\}$$

s.t.

$$\Psi_t(C_t, \pi_t, \Xi_t, G_t, s_t) + \beta E_t[\Psi_{t+1}(C_{t+1}, \pi_{t+1}, \Xi_{t+1}, G_{t+1}, s_{t+1})] = 0$$

其中 ζ 表示可实施约束的拉格朗日乘子，即

$$H_t(C_t, \pi_t, \Xi_t, G_t, s_t, \zeta) \equiv H \left(C_t, \frac{1}{s_t} \left[\frac{\delta}{2} (\pi_t - 1)^2 + C_t + G_t \right], \pi_t, \Xi_t, G_t, s_t, \zeta \right)$$

$$= u(C_t, l_t) + \zeta \left(u_c C_t + u_l l_t + u_\Xi \Xi_t \left(\frac{\omega_m}{s_t} - \frac{\theta - 1}{\theta} \right) + \frac{\delta}{2} (\pi_t - 1)^2 \right)$$

$$\Psi_t(C_t, \pi_t, \Xi_t, G_t, s_t) \equiv \Psi_t \left(C_t, \frac{1}{s_t} \left[\frac{\delta}{2} (\pi_t - 1)^2 + C_t + G_t \right], \pi_t, \Xi_t, G_t, s_t \right)$$

$$= u_\Xi \Xi_t \left[\frac{\delta l_t}{\delta} \left(\frac{\omega_m}{s_t} - \frac{\theta - 1}{\theta} \right) \right] - (\pi_t - 1) \pi_t$$

102
\[
\Psi_2(C_t, \pi_t, \Xi_t, G_t, s_t) \equiv \Psi_2 \left(C_t, \frac{1}{s_t} \left[\frac{\delta}{2} (\pi_t - 1)^2 + C_t + G_t \right], \pi_t, \Xi_t, G_t, s_t \right)
\]

\[
= u_c \Xi_t \left[(\pi_t - 1) \pi_t \right]
\]

显然，这里拉姆齐问题（P1）的约束条件中涉及了对未来变量的预期，Kydland and Prescott（1977）证明在这样的约束条件下贝尔曼方程不再满足，同时在任意时刻，最优资源配置和政府最优政策的解并不是满足 \(a_t = a(x_t, \sigma_t) \) 的形式，而是取决于随机冲击发生的历史。事实上对于问题（P1），我们可以直接定义拉格朗日函数，在后面的分析中我们发现可以将拉格朗日乘子视为一个新的状态变量，从而使原来的拉姆齐问题具有标准的递归形式。

设 \(\beta' \gamma_t \) 表示定义在问题（P1）的约束条件上的拉格朗日乘子，这样，这一拉格朗日函数表示为

\[
L = E_0 \left\{ \sum_{t=0}^{\infty} \beta'^t \left[H(C_t, \pi_t, \Xi_t, G_t, s_t, \zeta_t) + \right. \right.
\]

\[
\left. \left. \gamma_t \left(\Psi_1(C_t, \pi_t, \Xi_t, G_t, s_t) + \beta E_0 \left[\Psi_2(C_{t+1}, \pi_{t+1}, \Xi_{t+1}, G_{t+1}, s_{t+1}) \right] \right) \right] \right\}
\]

我们注意到，在上面的拉格朗日方程中仍然包含着对将来变量的预期，但是根据重复期望定理，我们可以将这一拉格朗日函数表示为

\[
L' = E_0 \sum_{t=0}^{\infty} \beta'^t (C_t, \pi_t, \Xi_t, \gamma_t, G_t, s_t, \varphi_t, \zeta_t)
\]

其中

\[
\varphi_t = \gamma_{t-1}, \quad \text{且} \quad \varphi_0 = 0
\]

通过这样的构造，我们将 \(\varphi_t \) 视为一个新的状态变量，而 \(\gamma_t \) 则被视为协状态变量。这样，根据对偶定理，原拉姆齐问题（P1）等价于下面的递归鞍点问题[证明见 Marcet and Marimon（1998）]：

\[
\min_{(C_t, \pi_t, \Xi_t)} \max_{(\gamma_t, \varphi_t)} \quad E_0 \sum_{t=0}^{\infty} \beta'^t \phi (C_t, \pi_t, \Xi_t, \gamma_t, G_t, s_t, \varphi_t, \zeta_t)
\]

\[
\text{s.t.} \quad \varphi_t = \gamma_{t-1}, \quad \text{且} \quad \varphi_0 = 0
\]

（SPP）

通过比较递归鞍点问题（SPP）和标准的动态规划问题（P0），我们发现事实上递归鞍点问题的约束条件中并不包含未知的将来变量，而且约束条件中各种变量之间具有递归关系，所以从这种意义上说，递归鞍点问题将原拉姆齐问题还原到了具有递归性质的动态规划问题。但是，从另一个角度来看，（SPP）并不是一个标准的动态规划问题，因为它的解事实上是一个鞍点均衡的问题，所以我们不能用动态规划的标准理论来求解（SPP）。Marcet and Marimon（1998）证明在我们的模型的标准假定情况下，递归鞍点问题的解可以通过一个鞍点函数方程（SPFE）得到，也就是存在一个价值函数 \(V(G, s, \varphi) \) 对于所有的状态变量 \((G, s, \varphi) \) 满足

\[
V(G, s, \varphi) = \min_{\gamma} \left\{ \max_{C_t, \pi_t, \Xi_t} \phi (C_t, \pi_t, \Xi_t, G_t, s_t, \gamma_t, \varphi_t, \zeta_t) + \beta E_0 \left[V(G', s', \varphi') \mid G, s_0 \right] \right\}
\]

\[
\text{s.t.} \quad \varphi_t = \gamma_{t-1}, \quad \text{且} \quad \varphi_0 = 0
\]

（SPFE）

事实上，我们在那里构造的鞍点函数方程是贝尔曼方程的一个一般表达式。但是值得注意
的是，要使投资额问题（SPP）的解等价于原拉姆齐问题（P1）的解，我们必须要求 $\varphi_0 = 0$，而在其他任意时期，状态变量 φ 取决于拉格朗日乘子和最优的决策方程。

根据 Marcet and Marimon（1998）的分析框架，我们得到下面的性质成立：

性质 3 如果企业调整其产品价格水平时面临着价格调整成本，那么给定任意时期和任意的随机变量实现，拉姆齐消费配置 C_i、劳动配置 l_i、通货膨胀 π_i、政府最优财政政策 Ξ，不仅是政府消费 G_i 和技术冲击 s_i 的函数，同时还取决于状态变量 φ_i，即

$$
C_i = C(G_i, s_i, \varphi_i); \quad l_i = l(G_i, s_i, \varphi_i);
$$
$$
\Xi_i = \Xi(G_i, s_i, \varphi_i); \quad \pi_i = \pi(G_i, s_i, \varphi_i), \quad \forall i, \sigma'
$$

根据性质 3，我们可以看到给定任意时期和任意的随机变量发生，在这一时期最优的资源配置和最优政府政策都取决于随机冲击发生的历史。对这一结论，我们可以从直观上来解释：由于政府对未来通货膨胀变化的不确定，而且政府债券是非状态随机的，这样在面对不同状态情况下的随机冲击时，如果政府税收政策仍然完全取决于当期的随机变量，且保持跨期平滑，那么显然政府的铸币收入以及债券发行量不可能为政府的公共消费支出提供完全的保险。另外，政府在考虑最优货币政策时必须对货币政策产生的效率损失和收益权衡；一方面，货币政策导致的通货膨胀率变化可以减少因为扭曲税所产生的效率损失；另一方面，不可预期的通货膨胀变化又会影响到企业是否能够灵活地调整其产品价格水平，刚性的价格调整必然会产生效率的损失。基于这两个方面的考虑，政府也希望通货膨胀的变化是平滑的。

六、 结束语

本文通过在 Lucas and Stokey（1983）模型中引入凯恩斯要素，运用动态一般均衡框架分析市场不完备和价格刚性对最优财政政策和货币政策的影响。

相对于卢卡斯和斯多基的完备市场模型而言，面对凯恩斯要素，中央计划者在做最优化选择时会面临新的最优定价约束条件——附加预期的菲利普斯曲线。我们用拉格朗日方法和递归方法分析了在不同市场环境设置下的拉姆齐问题，并通过对一阶条件的分析我们得到下列结论：第一，在刚性价格下，无论随机冲击的跨期分布是否存在相关性，政府各期税率以及政府债券发行量相关。这一结论不同于 Lucas and Stokey（1983）的结论——政府各期财政政策的相关性完全取决于随机冲击的跨期相关性，也不同于 Barro（1979）的结论——最优税率服从随机游走。第二，在刚性价格情况下，经济体中通货膨胀的变化平滑，也就是说其变化接近于零。但是在灵活价格调整时，通货膨胀的变化取决于各期随机冲击的变化，这样当经济体受到不同程度的随机冲击时，通货膨胀的变化程度不同。这一结论虽然在最近的关于最优货币政策的文献中得到证明，但是我们的分析中同时考虑了政府财政政策，并且它为最近的实证研究结果提供了一定的理论依据。最后，政府政策具有等价性，因为这种等价性，当面对通货膨胀和总量产出缺口变化时，政府可以仅仅通过调整利率就能够实现最优政策可以实现的资源配置。
另外，我们要强调的是，本文的结论是建立在严格的模型假定基础之上的。事实上，如果我们对模型的基本假定条件作出修改，那么上述结论可能不成立。

第一，我们在模型中假定政府发行期货无风险的债券和有价债券，根据资产最优定价策略，这两种债券形式是等价的财务工具，也就是说，模型中假定政府发行债券使得经济个体在收益上是无风险的，同时政府从经济个体手中获得的转一次性总量转移是无风险的。正是基于这一假定条件，我们认为政府如果希望为不可预期到的政府公开发行债券的保障，那么政府在各期发行的债券量取决于所有各期随机冲击发生的历史。而从现实的角度来看，模型中政府发行期货无风险债券是一个很强的假设条件，虽然它排除了债券收益的形态相容性，但它同样也排除了长期政府债券的情况。事实上，如果政府发行长期债券，那么在某种程度上，我们可以认为随债券相向的利率水平变化可以为内生的政府公共消费变化提供完全的保障。这是因为即使在长期债券到期时，它的收益率可能并不取决于随机变量的发生水平，但是在期与之之前，长期债券各期的市场价格却可能是期随机变量的函数。根据这一思想，政府可以在事前设计长期债券的期限结构，从而根据债券的市场价格控制利率期限结构的内生变化。于是，即使在各期税收收入不变，政府也能够通过发行政府债券弥补不同时期，不同随机状态情况下的政府公共支出。这样，关于最优财政政策的结论就又回到了 Lucas and Stokey(1983)关于最优税收和债券发行的论述。

第二，在本文的模型中我们仅仅假定产品市场是不完全的，名义刚性是来自于企业面临产品价格调整的菜单成本。在这一假定下，附加预期的菲利普斯曲线确定了通货膨胀和产出缺口之间的交替关系。我们的结论也就建立在这一约束条件基础上。但事实上，在现实经济中我们不能排除工资刚性的现象。如果在我们的模型中将假定劳动力市场不完全以及工资刚性，那么这种工资刚性势必会在产出缺口和通货膨胀稳定之间产生新的交替关系。而且，最近的研究表明名义刚性同时产生于工资刚性和价格刚性，那么，中央银行一般不可能通过政策调整来完全消除由名义刚性所导致的社会资源配置结果的扭曲。在这种情况下，政府的最优政策必然是在寻求产出缺口稳定、价格变化稳定和工资变化稳定三者之间的平衡。

第三，在本文的分析中，我们认为通过简单的名义利率调整可以实现对经济周期波动的调节，但是毋庸置疑的是，名义利率不可能调整到零利率水平以下。这样在目前经济状况中，很多经济体的利率调整空间事实上已经非常狭窄，而且利率调整政策对于经济复苏的影响也渐渐消失。比如，虽然日本长期保持其短期利率水平为零，也没有改变长达十余年的经济萧条。在这样的经济环境中，我们似乎应该更多地思考如何通过调整货币供给政策来调节经济波动。事实上，如果中央银行面对的利率调整空间狭窄，那么中央银行可以通过实施货币政策来调整人们对于通货膨胀的预期，从而调整实际利率。那么，中央银行采取怎样的货币政策才能达到人们预期的通货膨胀调整目标呢？在货币供给变动的同时，是否应该辅助以与之相适应的财政政策呢？这些都是目前货币经济学领域里重点讨论的问题。

第四，本文模型的基本构造是假定封闭经济。我们可以将这一模型框架扩展到开放经济的情形。事实上，随着目前经济全球化的推进，我们有必要研究在开放经济环境中，当面对外冲击时，央行货币政策如何解决这种冲击的能力。当然，在开放经济中，我们考虑的分析要素并不仅仅局限在货币政策的实际效率上，诸如汇率制度优劣选择、各国货币政策的相互协调等问题都是目前国际经济学领域的重要话题。
附录：消费者最优优化行为

定义拉格朗日函数，
\[
L = E_0 \left[\beta \left(u(C_t, l_t) + \frac{\lambda_t}{P_t} \left[M_t + R_tB_t + Z_t - (1 + \tau_t') \int_0^t P_t(i) c_t(i) di \right] \right. \right. \\
\left. \left. + (1 - \tau_t') W_t l_t + \int_0^t A_t(i) d_t(i) di + \int_0^t A_{t-1}(i) a_t(i) di \right) \right] \\
- M_{t+1} - B_{t+1} - E_t r_{t+1} Z_{t+1} - \int_0^t A_t(i) a_t(i) di \\
\left. + \frac{\xi_t}{P_t} \left[M_t - (1 + \tau_t') \int_0^t P_t(i) c_t(i) di \right] \right] \\
\tag{A1}
\]

给定政府宏观经济政策 \((M_t, B_t, Z_t, \tau_t', \tau_t', \tau_t', \tau_t') \), 价格系统 \((W_t, R_t, r_{t+1}, P_t(i), P_t) \), 消费者的初始财富 \(M_0 + Z_0 + R_0B_0 = 0 \), 消费者选择资源配置 \(\{c_t(i)\}_{i \in [0,1]}, \{A_t(i)\}_{i \in [0,1]} \), \(M_{t+1}, B_{t+1}, Z_{t+1} \) 的一阶条件为

\[
c_t(i) = \frac{u_c}{1 + \tau_t'} \left[\frac{c_t(i)}{C_t} \right] - \frac{P_t(i)}{P_t} (\lambda_t + \xi_t) \\
\tag{A2}
\]

\[
l_t = \frac{u_c}{1 - \tau_t'} = - \frac{W_t \lambda_t}{P_t} \\
\tag{A3}
\]

\[
M_{t+1} : \lambda_t = \beta E_t \left[\frac{\lambda_{t+1} + \xi_{t+1}}{\pi_{t+1}} \right] \\
\tag{A4}
\]

\[
B_{t+1} : \lambda_t = \beta E_t \left[\frac{R_{t+1} \lambda_{t+1}}{\pi_{t+1}} \right] \\
\tag{A5}
\]

\[
Z_{t+1} : r_{t+1} \pi_{t+1} = \frac{\beta u_c}{u_c} \frac{(1 + \tau_t')}{(1 + \tau_t')} a_t(i) \\
\tag{A6}
\]

\[
A_t(i) : \lambda_t a_t(i) = (1 - \tau_t') d_t(i) \lambda_t + E_t \left[\frac{\beta \lambda_{t+1} a_{t+1}(i)}{\pi_{t+1}} \right] \\
\tag{A7}
\]

而且资源配置满足非正溢出条件，

\[
\lim_{t \to \infty} E_t \left[q_t(M_t + Z_t + R_tB_t) \right] = 0 \\
\tag{A8}
\]

其中 \(q_t = \prod_{i=1}^t r_t \)，且 \(q_0 = 1 \)。

根据消费一阶条件(A2)以及总消费的定义，我们得到消费者关于中级产品的需求函数(A4)。这样，消费一阶条件可以表示成

\[
\frac{u_c}{1 + \tau_t'} = (\lambda_t + \xi_t) \\
\]

再根据货币选择一阶条件(A4)和债券选择一阶条件(A5)得到

\[
\frac{1}{R_t} (\lambda_t + \xi_t) = \lambda_t \\
\]

这样

\[
\frac{u_c}{R_t (1 + \tau_t')} = \lambda_t \\
\tag{A9}
\]
给定边际条件（A2）–（A9），最优资源配置边际条件（4）–（9）成立。

参考文献

Fiscal Policies and Monetary Policies under Monopolistic Competition

Gong Liutang Cui Xiaoyong

Guanghua School of Management, Peking University

Abstract: This paper extends Lucas and Stokey’s (1983) to a framework with monopolistic competition and price rigidity to analyze the effects of price rigidity and competition on the determination of optimal fiscal and monetary policies in a dynamic general equilibrium monetary model. Having the Keynesian elements confronts the Ramsey planner with an additional constraint, which is expectation-augmented Phillips curve, on equilibrium allocations beyond those imposed under Lucas and Stokey’s assumption of complete markets. We formulate the Ramsey problem under the different price setting environments in terms of a Lagrange and the recursive approach and solve the associated first-order conditions. The main findings of the paper are; First, even small deviations from full price flexibility induce near random walk behavior in government debt and tax rates. Second, for a miniscule degree of price stickiness, the optimal volatility of inflation is near zero. This result stands in stark contrast with the high volatility of inflation implied by the Ramsey allocation when prices are flexible. The finding is in line with a recent body of work on optimal monetary policy under nominal rigidities that ignores the role of optimal fiscal policy. Last, for the equivalence of the government’s fiscal policies, a simple policy rule that has the central bank adjust the interest rate in response to variations in inflation and/or the output gap generally provides a good approximation to the optimal rule.

Keywords: flexible price, sticky price, Phillips curve, fiscal policy, monetary policy.

JEL Classifications: D43, E52, H3