国内外期货市场间信息溢出效应的实证研究
——基于均值、方差和风险 Granger 因果关系

洪永淼 李 艺 隰凤彬 汪寿阳

摘要 利用 Hong(2001)方法系统检验了中国与国际市场间期货交易的 4 种信息溢出：均值、方差、10% 和 5% 下跌风险溢出。研究表明，在我们研究的 9 类期货品种中，8 类与国外市场间存在显著的信息溢出效应，而中国小麦期货受 CBOT 小麦显著的均值溢出影响，其反向信息溢出则不显著。并且，中国加入 WTO 后，国内外期货市场的联系有所增强，我国的期货品种也在国际期货市场中具备了一定的影响力。但总体而言，期货市场与国际期货市场相比，我国的期货市场仍处于信息溢出影响的弱势地位。

关键词 期货、Granger 因果关系、极端风险、信息溢出、GARCH

一、引言

伴随着经济的持续快速增长，我国许多大宗商品的消费量和产量已经跃居世界前列甚至居于首位。消费量的增加加大了国内的供需缺口，导致许多商品的进口量占国内消费量的比例接近或超过国内产量。例如，我国铜的消费量在 2004 年达到 346.80 万吨，占全球消费总量的 21%，净进口 137.6 万吨；同年橡胶（包括天然橡胶和合成橡胶）的消费量达到 407 万吨，占全球橡胶消耗的 20.4%，其中天然橡胶消费量为 237 万吨，进口量为 180 万吨；燃料油的消费中，进口量更占到 50% 以上。大豆 2003 年的进口量超过国内产量（1740 万吨），达到 2074 万吨。由此表明，我国市场大宗商品的供需变化必然成为影响国际市场供求格局进而国际市场价格波动重要因素。

另一方面，除供求因素外，国际期货市场价格也对国际市场价格的形成产生着重要影响。这主要是由于许多大宗商品的国际贸易采用期货定价，即以全球几家主要商品交易所的期货价格来指导全球商品贸易的定价。例如，铝、铜、铅、锡等金属的价格主要在伦敦金属交易所（LME）确定，能源的主要定价中心是纽约商业交易所（NYMEX）。而与国际市场相比，我国期货市场由于存在运行效率不高，国际竞争力较弱等问题，至今没有在国际市场定价中获得与贸易量相应的影响力，导致我国巨大的国际贸易量与国际价格之间未能实现良性互动。
与此同时，令人欣慰的是，在经历了初步形成、清理整顿和规范发展三个阶段后，近几年我国期货市场环境已明显好转，市场运行效率逐渐提高，市场功能也初步显现和发挥。一些期货品种在全球同类商品期货交易中占据了重要地位。以上海期货交易所（上交所、SHFE）为例，其期铜交易量在2003年年末超过COMEX，成为世界第二大期铜交易所。2004年SHFE全年交易量达106.2万吨，同期LME和COMEX的期铜成交量仅分别为457和36.2万吨，SHFE稳居第二位；SHFE天然橡胶期货在2003年11月份超过了东京工业品交易所（TOCOM）橡胶期货的交易量；SHFE铝交易量已经超过COMEX铝交易量，居世界第二位；SHFE燃料油期货交易量也在2004年超过新加坡，成为全球最大的燃料油期货交易所。此外，大连商品交易所（大商所，DCE）大豆期货（豆一）交易量在2002年约为世界最大的农产品交易所芝加哥商品交易所（CBOT）同期大豆期货交易量的四分之一，成为世界第二大大豆期货市场和世界最大的非转基因大豆期货交易中心。

期货市场在国家大宗商品定价中起着重要作用，并关系到国家经济安全。同时，加入WTO后，我国关税等贸易壁垒不断降低，使得国内外市场联系更为紧密，也给我国期货市场的发展带来了巨大的挑战和机遇。因而，对国内外期货市场之间的关系与信息溢出情况进行研究，一方面能够反映出我国期货市场的开放程度和国际影响力，对正确认识我国期货市场在大宗商品国际定价中的地位、分析我国期货市场现状和未来发展提供参考依据；另一方面，还可以为市场参与者提供国内外期货市场间信息溢出情况，并反映出国内外期货市场间信息溢出的变化及其背后的一些经济原因。

为此，本文选取目前国内期货市场上交易的所有品种为研究对象，通过研究国内外期货交易的均值、方差Granger因果关系（或称均值、方差溢出），10%和5%下跌风险溢出来度量我国与全球主要期货市场间的溢出信息。文章结构如下：第二部分介绍Granger因果检验及其在期货市场研究中的应用；第三部分介绍数据、模型与经验统计量。第四部分是实证分析，将对9种期货的日收益率序列建立波动率模型，然后检验国内外市场之间信息溢出情况。最后一部分总结全文并指出需要进一步研究的问题。附录中给出了模型参数、信息溢出统计量和期货价格图。

二、Granger因果检验与期货信息溢出研究

检验Granger因果关系和信息溢出有多种方法。一类常用的方法是线性回归、VAR、VAR-GARCH等检验均值或方差Granger因果关系，包括基于协整理论的误差修正模型，此

三、数据与模型

目前，我国三家期货交易所——大连商品交易所(大商所，DCE)、上海期货交易所(上交所，SHFE)和郑州商品交易所(郑商所，ZCE)——上市交易的品种共有 13 个，分别是 DCE 的豆一、豆二、豆粕、豆油和玉米，SHFE 的铜、铝、天然橡胶和燃料油，ZCE 的硬冬白小麦(硬麦)、优质强筋小麦、棉花和白糖。由于豆粕与豆油为大豆下游产品，因此可以大致分为 9 类，即铜、铝、橡胶、燃料油、豆类、玉米、小麦、糖和棉花。为全面地反映出我国期货市场的运行现状，我们的研究涵盖了以上所有的 9 类期货品种。

本文建模序列为期货合约日收益率，假设收盘价为 \(P_t \)，则定义日收益率为 \(r_t = \frac{100(\ln(P_t) - \ln(P_{t-1}))}{P_{t-1}} \)。期货合约的构造上，国内豆类期货选择豆一，小麦期货选择硬麦；国外期货选择世界主要期货交易所的合约，其中由于燃料油是原油的下游产品，受原油价格的影响很大，因此 SHFE 燃料油对应的国际期货选择 NYMEX 轻质原油。最终选取的 9 类合约为：SHFE 与 LME、COMEX 铜，SHFE 与 LME 铝，SHFE 与 TOCOM 橡胶，SHFE 燃料油与 NYMEX 轻质原油，DCE 与 CBOT 大豆、玉米，ZCE 和 CBOT 小麦，ZCE 和 NYBOT 棉花、糖。在具体合约的选择上，以国内外交易均活跃的连续合约作为研究对象。在数据来源方面，ZCE 糖数据来源于 ZCE，其他国内期货数据与 LME3 月铜铝(注：LME 铜铝数据为场外交易数据)数据来自文华财经，TOCOM 橡胶数据来源于 TOCOM，其余国外期货数据来源于
路透金融信息系统。期货价格以各个交易所的报价单位为准。由于样本报期内汇率波动较期货波动很小(注：人民币在2005年7月22日升值2%，除此之外人民币汇率波动也很小)，因此我们忽略汇率影响。

我们对一些样本量较短的期货合约如铜、铝、橡胶和小麦的日收益率分段建模，以比较不同时期内国内外市场间信息溢出的变化情况。由于中国2001年11月加入WTO以来，经济持续快速增长，部分商品进口大幅增加，商品平均关税及其他贸易壁垒不断降低，使得中国与国际市场的联系更加紧密，因此我们以2002年1月1日为样本报期起始点，分别研究此时间段前后国内外期货交易间信息溢出的变化。

对比国内外各种期货价格图形(见附录中的期货价格对比图)可以看出，几种国内外期货价格的关系显示较为差距，铜期货交易在国内外市场走势非常一致，而小麦期货的价格走势差别很大，其他商品的国内外走势则介于两者之间。由于国内外节假日不同，我们采取下面的处理方式减少其影响。对于中国的一些长假，如五一劳动节、国庆节、春节，删除长假期间国内外市场交易收益率，并且如果中国长假后的第一个交易日收益率绝对值大于1则删除，否则保留；对于国外的单日或双日假期，我们将其收益率设置为0。

本文度量信息溢出采用Hong(2001)的方法。首先对每个收益率序列建立正确的模型，然后采用Hong(2001)建立的信息溢出检验量检验国内外期货市场间均值、方差、10%与5%下跌风险4种信息溢出。

首先检验这些收益率序列的平稳性，PP检验表明这些序列都是平稳序列。然后对收益率序列建立AR-GARCH(或AR-IGARCH)模型。一般的期货收益率序列采用GARCH模型，对于其中的一些波动持续性很强的序列，将采用IGARCH模型，最后建立AR(m)－GARCH(p,q)[或AR(m)－IGARCH(p,q)]，选择的条件分布为正态分布，模型形式如下：

\[
\begin{align*}
 r_t &= c + \sum_{i=1}^{m} a_i r_{t-i} + \varepsilon_t \\
 \varepsilon_t | \Psi_{t-1} &\sim N(0, h_t) \\
 h_t &= \alpha_0 + \sum_{i=1}^{m} \alpha_i \varepsilon_{t-i}^2 + \sum_{j=1}^{s} \beta_j h_{t-j}
\end{align*}
\]

其中 ε_t 为 t 时刻的随机误差项，Ψ 为 t 时刻的信息，$N(0, h_t)$ 为 t 时刻残差的条件分布：均值为0，方差为 h_t 的正态分布（对于IGARCH模型，条件方差的表达式与GARCH模型相同，但是有参数限制：$\sum_{i=1}^{m} \alpha_i + \sum_{j=1}^{s} \beta_j = 1$）。

最后检验Granger因果关系和信息溢出，采用Hong(2001)提出的单向风险-Granger因
果关系统计量检验，本文记为 $Q(M)$:
\[
Q(M) = \left\{ \sum_{j=1}^{T} \lambda_j \hat{\rho}(j/M) \sum_{j=1}^{T} \lambda_j \right\} / \left(2D_\tau(k) \right)^{1/2}
\]
其中 $\hat{\rho}(j)$ 为滞后期 j 期的模型标准化残差之间的样本协方差系数，$k(x)$ 与 k 为核函数，M 为有效滞后截尾阶数，$C_\tau(k) = \sum_{j=1}^{T} (1 - j/T) k(j/M)$，$D_\tau(k) = \sum_{j=1}^{T} (1 - j/T)(1 - (j + 1)/T) k(j/M)$. 由于 Hong (2001) 模拟检验表明基于 Daniel 核函数的统计量检验效果最好，所以本文采用的检验量均基于 Daniel 核函数。在一些常规条件下，Hong (2001) 证明了在原假设“两个 IID 模型标准化残差序列相互独立”成立时，当 $T \to \infty$ 时 M 满足，当 $T \to \infty$ 时，$M \to \infty$ 与 $M \to 0$ 成立，$Q(M) \to N(0,1)$，因此可以通过判断 $Q(M)$ 值是否大于标准正态分布右侧的临界值来检验原假设是否成立。

四、实证结果

我们对每个序列建立波动率模型，建模采取由特殊到一般的方法：先根据自相关系数选择自回归模型的滞后阶数，然后根据 $Q(M)$ 检验量的 p 值判断回归模型与波动率模型的设定是否正确，不正确则修改模型的阶数，直至找到合适的模型（残差为白噪声）为止。得到序列的模型参数见附录的表 1，同时给出模型残差检验的 Box-Pierce 检验量值。根据残差检验的 p 值，所有模型在 1% 水平上设定正确，其中大部分模型在 5% 水平上设定正确。

附录中的表 2 给出了均值、方差溢出和 10% 与 5% 下跌风险的单向溢出检验量及其对应的 p 值，由此我们得到国内外市场间期货交易的信息溢出情况。自 2002 年以来，我们研究的 9 种期货合约除小麦外，均与对应国外市场的期货交易之间存在着显著的信息溢出效应，且国内受国外的信息溢出效应强于反向的信息溢出。ZCE 小麦受 CBOT 小麦显著的均值溢出以及在 10% 水平上显著的方差溢出影响，但是其对 CBOT 小麦的 4 种信息溢出均不显著。而在 2002 年以前，国内外市场之间的铜、铝期货已经存在显著的信息溢出效应，TOCOM 与 SHFE 期货之间的信息溢出则不显著。ZCE 小麦仅受到 CBOT 小麦显著的方差溢出影响，而中国小麦对 CBOT 小麦没有显著的信息溢出效应。

比较铜、铝、橡胶和小麦 4 种期货品种在我国加入 WTO 前后的信息溢出检验量，可以发现国内外期货市场间的信息溢出有了很大的增强。我们认为，主要原因在于：(1) 我国加入 WTO 后平均关税水平普遍下降，非关税贸易壁垒降低；(2) 我国经济的快速增长导致这些商品的进出口大幅度增加，影响到国际商品市场的供求格局，进而影响到国际期货市场；(3) 我国期货市场的发展使部分期货价格成为中国市场的权威价格，能够反映中国市场的供需关系，并对国际期货市场产生影响；(4) 信息技术尤其是网络技术的发展使得全球各种信息可以被快捷及时地传播。这些因素使得国内外期货市场之间的联接更为密切，彼此之间的信息溢出也随之增强。另一方，各种期货商品由于自身因素的不同使得国内外市场间的信息溢出效应表现出较大差异。国内外期铜市场联系最为紧密，小麦的联系最弱，其他品种则基本介于二者之间。
间。这些差异主要来源于进出口关税和配额等非关税壁垒造成的市场间套利成本、相应商品的进出口量或消费量的差别以及不同期价品种成熟度的差别等因素。

我们认为，SHFE 铜与国际期铜市场间的竞争关系较弱，其主要原因在于我国铜的消费和进口量在全球铜贸易中占非常重要的位置，十几年的全球铜消费的增量也主要来自中国需求的增加。此外，由于长期缺铜，我国一直鼓励铜进口，在进口方面基本没有设置非关税贸易壁垒，进口铜税也较低。据统计，2000 年我国有色金属产品（包括铜、铝）进口关税优惠税率为 7.2%，远低于我国进口商品平均进口关税率 17% 的水平，2001 年初，我国又将电解铜的进口关税从 5% 降至 2%。最后，我国铜期货是一个相对成熟的期货品种，交易量很大，商品铜的期货交易比例较高。国内大中型冶炼企业几乎都通过上海铜期货市场进行套期保值和定价。因此国内铜的供求信息能很快反映到期货价格上。

小麦与国际市场联系较弱的主要原因是其进口占国内消费的比例并不高。我国小麦消费量为世界第一，但同时其产量亦居世界首位，国内供需基本平衡，进口部分比例不高。我国小麦进口采取进口关税配额制，2005 年进口配额指标为 963.6 万吨，配额内关税为 1%，而配额外关税为 65%，实际小麦产量为 9745.1 万吨，进口量为 351 万吨，进口占国内消费的比例并不高，并且国家储备小麦用于保证粮食安全和防止价格波动。这些因素使得我国小麦虽受到外部显著的影响，但主要影响其走势的还是国内因素。

综上所述，虽然各个期货商品表现出各自特点，但对大部分期货商品而言，国内外期货市场间存在显著的相互关系和信息溢出效应。尽管如此，总体而言，我国期货市场仍处于信息溢出的弱势地位，在国际价格形成中没有获得与进口量相对应的地位。

此外，我们选取国内外市场关联度较高的铜期货，比较了 SHFE、LME 与 COMEX 间信息溢出。SHFE 与 COMEX 铜的信息溢出检验结果与 Fung et al. （2003）的结论相同，且 SHFE 与 COMEX 的关系和 SHFE 与 LME 的关系很类似。但是 COMEX 对 LME 仅有显著的 10% 与 5% 跌幅溢出，均值与方差溢出均不显著，而反向溢出效应非常显著，由于 LME 在全球期铜交易量占有极大份额，而 COMEX 的份额相对较小，因此在一般情况下，可以忽略 COMEX 的信息影响，认为 SHFE 铜的信息主要源自 LME 市场而非 COMEX 市场。

五、总结

本文利用 Hong（2001）提出的方法系统地研究了我国期货市场与国际期货市场之间的均值、方差、10% 和 5% 跌幅信息溢出效应。研究结果显示：目前我国的橡胶、铜、铝、燃料油、大豆、棉花、玉米以及糖期货市场与对应的国际期货市场之间存在显著的信息溢出效应，且国内期货市场受到的信息溢出影响更强烈；而小麦期货则没有显著的对外信息溢出，其受 CBOT 小麦的信息溢出虽然显著，但并不是很强。总体上，中国期货市场虽然对外有了信息溢出效应，由于发展时间较短，交易量较少，市场还不是很成熟，与国际期货市场间的溢出效应相比仍然处于弱势地位。此外，随着进口量的增加、加入 WTO 后我国关税和配额制等贸易壁垒的降低、国内期货市场的规范发展和信息技术的进步，国内外期货市场间的信息溢出呈增强态势。为此，应进一步提高我国期货市场的运行效率，促进其健康发展，使其适应经济全球化的趋势，并逐步在国际市场价格形成中发挥应有的影
响力。

同时，本文的研究还存在一定的不足。由于我们研究的是日数据，虽然 TOCOM 和 SHFE 橡胶的收盘时间不同，但时差只有 1 个小时，期货交易有重叠时间，所以研究结果中关于 TOCOM 橡胶期货对 SHFE 的信息溢出中可能含有 SHFE 的市场信息，将来需要更高频的数据来识别信息溢出的方向。此外，本文忽略了日元汇率的影响，在未来的研究中我们将对此加以考虑，以便得到更准确的结果。

附录

<table>
<thead>
<tr>
<th>表 1</th>
<th>模型参数估计与检验量</th>
</tr>
</thead>
<tbody>
<tr>
<td>市场</td>
<td>SHFE 1</td>
</tr>
<tr>
<td>均值方程</td>
<td></td>
</tr>
<tr>
<td>c</td>
<td>-0.0514</td>
</tr>
<tr>
<td></td>
<td>(0.0250)</td>
</tr>
<tr>
<td>a_1</td>
<td>-0.0736</td>
</tr>
<tr>
<td></td>
<td>(0.0339)</td>
</tr>
<tr>
<td>波动率方程</td>
<td></td>
</tr>
<tr>
<td>a_0</td>
<td>0.0283</td>
</tr>
<tr>
<td></td>
<td>(0.0091)</td>
</tr>
<tr>
<td>a_1</td>
<td>0.0622</td>
</tr>
<tr>
<td></td>
<td>(0.0145)</td>
</tr>
<tr>
<td>β</td>
<td>0.9039</td>
</tr>
<tr>
<td></td>
<td>(0.0214)</td>
</tr>
<tr>
<td>BP(M)</td>
<td></td>
</tr>
<tr>
<td>[0.549]</td>
<td>[0.326]</td>
</tr>
<tr>
<td>20</td>
<td>18.186</td>
</tr>
<tr>
<td>[0.445]</td>
<td>[0.021]</td>
</tr>
<tr>
<td>市场</td>
<td>TOCOM 1</td>
</tr>
<tr>
<td>均值方程</td>
<td></td>
</tr>
<tr>
<td>c</td>
<td>-0.1218</td>
</tr>
<tr>
<td></td>
<td>(0.0682)</td>
</tr>
<tr>
<td>a_1</td>
<td>0.1004</td>
</tr>
<tr>
<td></td>
<td>(0.0344)</td>
</tr>
<tr>
<td>波动率方程</td>
<td></td>
</tr>
<tr>
<td>a_0</td>
<td>0.4012</td>
</tr>
<tr>
<td></td>
<td>(0.1558)</td>
</tr>
<tr>
<td>a_1</td>
<td>0.1045</td>
</tr>
<tr>
<td></td>
<td>(0.025)</td>
</tr>
<tr>
<td>β</td>
<td>0.8193</td>
</tr>
<tr>
<td></td>
<td>(0.0452)</td>
</tr>
<tr>
<td>BP(M)</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>5.89</td>
</tr>
<tr>
<td>[0.659]</td>
<td>[0.403]</td>
</tr>
<tr>
<td>20</td>
<td>22.05</td>
</tr>
<tr>
<td>[0.230]</td>
<td>[0.25]</td>
</tr>
<tr>
<td>市场</td>
<td>CBOT 麦 2</td>
</tr>
<tr>
<td>------</td>
<td>----------</td>
</tr>
<tr>
<td>均值方程</td>
<td></td>
</tr>
<tr>
<td>(c)</td>
<td>-0.0593</td>
</tr>
<tr>
<td></td>
<td>(0.0515)</td>
</tr>
<tr>
<td>(a_1)</td>
<td>-0.0085</td>
</tr>
<tr>
<td></td>
<td>(0.0325)</td>
</tr>
<tr>
<td>波动率方程</td>
<td></td>
</tr>
<tr>
<td>(a_0)</td>
<td>0.0394</td>
</tr>
<tr>
<td></td>
<td>(0.0236)</td>
</tr>
<tr>
<td>(a_1)</td>
<td>0.0282</td>
</tr>
<tr>
<td></td>
<td>(0.0088)</td>
</tr>
<tr>
<td>(\beta)</td>
<td>0.9504</td>
</tr>
<tr>
<td></td>
<td>(0.0131)</td>
</tr>
<tr>
<td>BP(M)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>[0.266]</td>
</tr>
<tr>
<td>20</td>
<td>26.8</td>
</tr>
<tr>
<td></td>
<td>[0.083]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>市场</th>
<th>COMEX 铜</th>
<th>LME 铝 1</th>
<th>SHFE 胶 1</th>
<th>SHFE 胶 2</th>
<th>DCE 豆</th>
<th>CBOT 麦 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>均值方程</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(c)</td>
<td>0.1104</td>
<td>0.0164</td>
<td>-0.0477</td>
<td>0.0543</td>
<td>0.0448</td>
<td>-0.0863</td>
</tr>
<tr>
<td></td>
<td>(0.043)</td>
<td>(0.0358)</td>
<td>(0.0259)</td>
<td>(0.0341)</td>
<td>(0.0268)</td>
<td>(0.0512)</td>
</tr>
<tr>
<td>(a_1)</td>
<td>-0.0669</td>
<td>0.0079</td>
<td>-0.0192</td>
<td>0.0364</td>
<td>0.0081</td>
<td>-0.0037</td>
</tr>
<tr>
<td></td>
<td>(0.0322)</td>
<td>(0.0378)</td>
<td>(0.0391)</td>
<td>(0.0363)</td>
<td>(0.0403)</td>
<td>(0.0361)</td>
</tr>
<tr>
<td>(a_2)</td>
<td>-0.0168</td>
<td></td>
<td>0.0389</td>
<td>0.0548</td>
<td>0.0887</td>
<td>-0.021</td>
</tr>
<tr>
<td></td>
<td>(0.0315)</td>
<td></td>
<td>(0.0373)</td>
<td>(0.0360)</td>
<td>(0.0348)</td>
<td>(0.0361)</td>
</tr>
<tr>
<td>(a_3)</td>
<td>0.0246</td>
<td></td>
<td>0.0822</td>
<td>0.0640</td>
<td>0.0888</td>
<td>-0.016</td>
</tr>
<tr>
<td></td>
<td>(0.0318)</td>
<td></td>
<td>(0.0383)</td>
<td>(0.0346)</td>
<td>(0.0311)</td>
<td>(0.0361)</td>
</tr>
<tr>
<td>(a_4)</td>
<td>-0.0996</td>
<td></td>
<td>0.0624</td>
<td>0.0246</td>
<td>0.0171</td>
<td>-0.0354</td>
</tr>
<tr>
<td></td>
<td>(0.0318)</td>
<td></td>
<td>(0.0342)</td>
<td>(0.0308)</td>
<td>(0.0360)</td>
<td></td>
</tr>
<tr>
<td>(a_5)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(a_6)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(a_7)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(a_8)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(a_9)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>波动率方程</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\alpha_0)</td>
<td>0.0062</td>
<td>0.1124</td>
<td>0.0841</td>
<td>0.0944</td>
<td>0.3200</td>
<td>1.9354</td>
</tr>
<tr>
<td></td>
<td>(0.003)</td>
<td>(0.0625)</td>
<td>(0.0208)</td>
<td>(0.0293)</td>
<td>(0.083)</td>
<td>(0.0993)</td>
</tr>
<tr>
<td>(\alpha_1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\beta)</td>
<td>0.9679</td>
<td>0.0695</td>
<td>0.6700</td>
<td>0.7502</td>
<td>0.323</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.0056)</td>
<td>(0.014)</td>
<td>(0.0493)</td>
<td>(0.0352)</td>
<td>(0.1345)</td>
<td></td>
</tr>
<tr>
<td>(\beta)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
续表

<table>
<thead>
<tr>
<th>市场</th>
<th>COMEX 铜</th>
<th>LME 铝 LME 铝</th>
<th>SHFE 胶 1</th>
<th>SHFE 胶 2</th>
<th>DCE 豆</th>
<th>CBOT 豆 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>BP(M)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>2.00</td>
<td>[0.849]</td>
<td>11.33</td>
<td>7.85</td>
<td>3.97</td>
<td>21.6</td>
</tr>
<tr>
<td>20</td>
<td>17.0</td>
<td>[0.318]</td>
<td>11.14</td>
<td>19.1</td>
<td>15.97</td>
<td>31.97</td>
</tr>
</tbody>
</table>

注：1）市场代码栏为所在市场与合约品种，1表示2002年以前数据建立的模型，2表示2002年以后模型，“*”表示模型为IGARCH模型，糖期货合约为AR(l)模型，“[#]”表示模型检验量的滞后阶数M依次分别为20与30，用于自回归模型滞后阶数过长，M取较大值。“(-)”内为参数对应的t值；BP(M)为滞后M阶的Box-Pierce检验量；“[*]”内为BP(M)对应的P值，“—”表示无此项；下同。

2）采用的软件为Gauss8.0，方法为CML估计。

表2 市场间Granger因果关系与风险溢出检验

<table>
<thead>
<tr>
<th>期货品种</th>
<th>M</th>
<th>10</th>
<th>20</th>
<th>期货品种</th>
<th>M</th>
<th>10</th>
<th>20</th>
</tr>
</thead>
<tbody>
<tr>
<td>铜：SHFE⇒LME 1998—2001</td>
<td>均值</td>
<td>19.22</td>
<td>(0.00)</td>
<td>13.15</td>
<td>(0.00)</td>
<td>均值</td>
<td>28.65</td>
</tr>
<tr>
<td></td>
<td>方差</td>
<td>11.26</td>
<td>(0.00)</td>
<td>7.26</td>
<td>(0.00)</td>
<td>10%</td>
<td>11.26</td>
</tr>
<tr>
<td></td>
<td>5%</td>
<td>1.51</td>
<td>(0.086)</td>
<td>1.71</td>
<td>(0.04)</td>
<td></td>
<td>10.5</td>
</tr>
<tr>
<td>铜：LME⇒SHFE 1998—2001</td>
<td>均值</td>
<td>153.3</td>
<td>(0.00)</td>
<td>107.3</td>
<td>(0.00)</td>
<td>均值</td>
<td>153.2</td>
</tr>
<tr>
<td></td>
<td>方差</td>
<td>100.4</td>
<td>(0.00)</td>
<td>69.6</td>
<td>(0.00)</td>
<td>10%</td>
<td>53.7</td>
</tr>
<tr>
<td></td>
<td>5%</td>
<td>90.06</td>
<td>(0.00)</td>
<td>63.25</td>
<td>(0.00)</td>
<td></td>
<td>84.84</td>
</tr>
<tr>
<td>铜：LME⇒COMEX 2002—2006</td>
<td>均值</td>
<td>375</td>
<td>(0.00)</td>
<td>260</td>
<td>(0.00)</td>
<td>均值</td>
<td>27.33</td>
</tr>
<tr>
<td></td>
<td>方差</td>
<td>292.3</td>
<td>(0.00)</td>
<td>202.5</td>
<td>(0.00)</td>
<td>10%</td>
<td>6.88</td>
</tr>
<tr>
<td></td>
<td>5%</td>
<td>266</td>
<td>(0.00)</td>
<td>185.6</td>
<td>(0.00)</td>
<td></td>
<td>9.08</td>
</tr>
<tr>
<td>期货品种</td>
<td>M</td>
<td>10</td>
<td>20</td>
<td>期货品种</td>
<td>M</td>
<td>10</td>
<td>20</td>
</tr>
<tr>
<td>-----------</td>
<td>-----</td>
<td>----</td>
<td>----</td>
<td>-----------</td>
<td>-----</td>
<td>----</td>
<td>----</td>
</tr>
<tr>
<td>铜：COMEX⇒LME 2002—2006</td>
<td>均值</td>
<td>0.355</td>
<td>0.14</td>
<td>均值</td>
<td>150.2</td>
<td>104.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.36)</td>
<td>(0.44)</td>
<td></td>
<td></td>
<td>(0.00)</td>
<td>(0.00)</td>
</tr>
<tr>
<td></td>
<td>方差</td>
<td>−1.02</td>
<td>−1.65</td>
<td>方差</td>
<td>39.91</td>
<td>27.22</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.85)</td>
<td>(0.95)</td>
<td></td>
<td></td>
<td>(0.00)</td>
<td>(0.00)</td>
</tr>
<tr>
<td></td>
<td>10%</td>
<td>2.18</td>
<td>1.06</td>
<td>10%</td>
<td>53.5</td>
<td>38.06</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.015)</td>
<td>(0.15)</td>
<td></td>
<td></td>
<td>(0.00)</td>
<td>(0.00)</td>
</tr>
<tr>
<td></td>
<td>5%</td>
<td>3.93</td>
<td>3.078</td>
<td>5%</td>
<td>67.18</td>
<td>46.78</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.00)</td>
<td>(0.001)</td>
<td></td>
<td></td>
<td>(0.00)</td>
<td>(0.00)</td>
</tr>
<tr>
<td>铝：SHFE⇒LME 1999—2001</td>
<td>均值</td>
<td>5.30</td>
<td>3.91</td>
<td>均值</td>
<td>9.44</td>
<td>6.20</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.00)</td>
<td>(0.00)</td>
<td></td>
<td></td>
<td>(0.00)</td>
<td>(0.00)</td>
</tr>
<tr>
<td></td>
<td>方差</td>
<td>1.14</td>
<td>0.95</td>
<td>方差</td>
<td>7.34</td>
<td>5.71</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.13)</td>
<td>(0.17)</td>
<td></td>
<td></td>
<td>(0.00)</td>
<td>(0.00)</td>
</tr>
<tr>
<td></td>
<td>10%</td>
<td>−0.61</td>
<td>−0.16</td>
<td>10%</td>
<td>0.13</td>
<td>−0.56</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.73)</td>
<td>(0.56)</td>
<td></td>
<td></td>
<td>(0.45)</td>
<td>(0.71)</td>
</tr>
<tr>
<td></td>
<td>5%</td>
<td>0.42</td>
<td>−0.53</td>
<td>5%</td>
<td>4.09</td>
<td>2.69</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.34)</td>
<td>(0.703)</td>
<td></td>
<td></td>
<td>(0.00)</td>
<td>(0.004)</td>
</tr>
<tr>
<td>铜：LME⇒SHFE 1999—2001</td>
<td>均值</td>
<td>110.5</td>
<td>76.7</td>
<td>均值</td>
<td>103.1</td>
<td>71.7</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.00)</td>
<td>(0.00)</td>
<td></td>
<td></td>
<td>(0.00)</td>
<td>(0.00)</td>
</tr>
<tr>
<td></td>
<td>方差</td>
<td>46.85</td>
<td>32.47</td>
<td>方差</td>
<td>8.79</td>
<td>5.52</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.00)</td>
<td>(0.00)</td>
<td></td>
<td></td>
<td>(0.00)</td>
<td>(0.14)</td>
</tr>
<tr>
<td></td>
<td>10%</td>
<td>−0.42</td>
<td>−0.95</td>
<td>10%</td>
<td>−1.23</td>
<td>−1.02</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.66)</td>
<td>(0.83)</td>
<td></td>
<td></td>
<td>(0.89)</td>
<td>(0.85)</td>
</tr>
<tr>
<td></td>
<td>5%</td>
<td>−0.84</td>
<td>−1.09</td>
<td>5%</td>
<td>0.05</td>
<td>−0.44</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.80)</td>
<td>(0.86)</td>
<td></td>
<td></td>
<td>(0.48)</td>
<td>(0.67)</td>
</tr>
<tr>
<td>燃料油：SHFE⇒NYMEX 2004—2006</td>
<td>均值</td>
<td>5.97</td>
<td>4.38</td>
<td>均值</td>
<td>49.5</td>
<td>34.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.00)</td>
<td>(0.00)</td>
<td></td>
<td></td>
<td>(0.00)</td>
<td>(0.00)</td>
</tr>
<tr>
<td></td>
<td>方差</td>
<td>−0.43</td>
<td>−0.16</td>
<td>方差</td>
<td>13.76</td>
<td>9.86</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.67)</td>
<td>(0.57)</td>
<td></td>
<td></td>
<td>(0.00)</td>
<td>(0.00)</td>
</tr>
<tr>
<td></td>
<td>10%</td>
<td>4.72</td>
<td>3.09</td>
<td>10%</td>
<td>−0.61</td>
<td>−0.51</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.00)</td>
<td>(0.00)</td>
<td></td>
<td></td>
<td>(0.73)</td>
<td>(0.70)</td>
</tr>
<tr>
<td></td>
<td>5%</td>
<td>6.44</td>
<td>4.43</td>
<td>5%</td>
<td>−0.97</td>
<td>−1.25</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.00)</td>
<td>(0.00)</td>
<td></td>
<td></td>
<td>(0.83)</td>
<td>(0.75)</td>
</tr>
<tr>
<td>橡胶：SHFE⇒TOCOM 1998—2001</td>
<td>均值</td>
<td>−0.13</td>
<td>−0.6</td>
<td>均值</td>
<td>2.74</td>
<td>2.73</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.55)</td>
<td>(0.73)</td>
<td></td>
<td></td>
<td>(0.00)</td>
<td>(0.00)</td>
</tr>
<tr>
<td></td>
<td>方差</td>
<td>−0.8</td>
<td>−1.2</td>
<td>方差</td>
<td>2.71</td>
<td>1.67</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.78)</td>
<td>(0.88)</td>
<td></td>
<td></td>
<td>(0.00)</td>
<td>(0.05)</td>
</tr>
<tr>
<td></td>
<td>10%</td>
<td>−0.5</td>
<td>−0.7</td>
<td>10%</td>
<td>1.48</td>
<td>1.86</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.71)</td>
<td>(0.77)</td>
<td></td>
<td></td>
<td>(0.07)</td>
<td>(0.05)</td>
</tr>
<tr>
<td></td>
<td>5%</td>
<td>−0.8</td>
<td>−0.9</td>
<td>5%</td>
<td>−0.67</td>
<td>−0.48</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.8)</td>
<td>(0.82)</td>
<td></td>
<td></td>
<td>(0.75)</td>
<td>(0.69)</td>
</tr>
<tr>
<td>期货品种</td>
<td>M</td>
<td>10</td>
<td>20</td>
<td>期货品种</td>
<td>M</td>
<td>10</td>
<td>20</td>
</tr>
<tr>
<td>-----------</td>
<td>------</td>
<td>--------</td>
<td>--------</td>
<td>-----------</td>
<td>------</td>
<td>--------</td>
<td>--------</td>
</tr>
<tr>
<td>橡胶：TOCOM⇒SHFE 1998—2001</td>
<td>均值</td>
<td>1.01</td>
<td>0.84</td>
<td>均值</td>
<td>36.5</td>
<td>(0.00)</td>
<td>25.34</td>
</tr>
<tr>
<td></td>
<td>(0.16)</td>
<td>(0.2)</td>
<td></td>
<td></td>
<td>(0.00)</td>
<td>(0.00)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>方差</td>
<td>−1.1</td>
<td>−1.6</td>
<td>方差</td>
<td>2.91</td>
<td>(0.002)</td>
<td>1.77</td>
</tr>
<tr>
<td></td>
<td>(0.87)</td>
<td>(0.95)</td>
<td></td>
<td></td>
<td>(0.04)</td>
<td>(0.04)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10%</td>
<td>−0.3</td>
<td>−0.5</td>
<td>10%</td>
<td>7.84</td>
<td>(0.00)</td>
<td>5.45</td>
</tr>
<tr>
<td></td>
<td>(0.62)</td>
<td>(0.7)</td>
<td></td>
<td></td>
<td>(0.00)</td>
<td>(0.00)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5%</td>
<td>0.46</td>
<td>0.09</td>
<td>5%</td>
<td>2.28</td>
<td>(0.01)</td>
<td>1.85</td>
</tr>
<tr>
<td></td>
<td>(0.32)</td>
<td>(0.46)</td>
<td></td>
<td></td>
<td>(0.05)</td>
<td>(0.05)</td>
<td></td>
</tr>
<tr>
<td>玉米：DCE⇒CBOT 2004—2006</td>
<td>均值</td>
<td>2.47</td>
<td>1.41</td>
<td>均值</td>
<td>12.0</td>
<td>(0.00)</td>
<td>8.51</td>
</tr>
<tr>
<td></td>
<td>(0.007)</td>
<td>(0.08)</td>
<td></td>
<td></td>
<td>(0.00)</td>
<td>(0.00)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>方差</td>
<td>−1.22</td>
<td>−1.65</td>
<td>方差</td>
<td>2.45</td>
<td>(0.007)</td>
<td>1.60</td>
</tr>
<tr>
<td></td>
<td>(0.89)</td>
<td>(0.95)</td>
<td></td>
<td></td>
<td>(0.055)</td>
<td>(0.055)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10%</td>
<td>−0.74</td>
<td>−0.67</td>
<td>10%</td>
<td>1.09</td>
<td>(0.14)</td>
<td>0.55</td>
</tr>
<tr>
<td></td>
<td>(0.77)</td>
<td>(0.75)</td>
<td></td>
<td></td>
<td>(0.29)</td>
<td>(0.29)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5%</td>
<td>−0.59</td>
<td>−0.50</td>
<td>5%</td>
<td>0.70</td>
<td>(0.24)</td>
<td>0.22</td>
</tr>
<tr>
<td></td>
<td>(0.72)</td>
<td>(0.69)</td>
<td></td>
<td></td>
<td>(0.41)</td>
<td>(0.41)</td>
<td></td>
</tr>
<tr>
<td>大豆：DCE⇒CBOT 2002—2006</td>
<td>均值</td>
<td>19.3</td>
<td>13.8</td>
<td>均值</td>
<td>47.1</td>
<td>(0.00)</td>
<td>32.9</td>
</tr>
<tr>
<td></td>
<td>(0.00)</td>
<td>(0.01)</td>
<td></td>
<td></td>
<td>(0.00)</td>
<td>(0.00)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>方差</td>
<td>−0.7</td>
<td>1.36</td>
<td>方差</td>
<td>39.1</td>
<td>(0.00)</td>
<td>27.4</td>
</tr>
<tr>
<td></td>
<td>(0.76)</td>
<td>(0.08)</td>
<td></td>
<td></td>
<td>(0.00)</td>
<td>(0.00)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10%</td>
<td>3.74</td>
<td>2.78</td>
<td>10%</td>
<td>0.22</td>
<td>(0.41)</td>
<td>1.42</td>
</tr>
<tr>
<td></td>
<td>(0.00)</td>
<td>(0.00)</td>
<td></td>
<td></td>
<td>(0.08)</td>
<td>(0.08)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5%</td>
<td>2.9</td>
<td>2.58</td>
<td>5%</td>
<td>−0.4</td>
<td>(0.67)</td>
<td>2.17</td>
</tr>
<tr>
<td></td>
<td>(0.00)</td>
<td>(0.00)</td>
<td></td>
<td></td>
<td>(0.02)</td>
<td>(0.02)</td>
<td></td>
</tr>
<tr>
<td>棉花：ZCE⇒NYBOT 2004—2006</td>
<td>均值</td>
<td>4.09</td>
<td>3.24</td>
<td>均值</td>
<td>28.6</td>
<td>(0.00)</td>
<td>20.3</td>
</tr>
<tr>
<td></td>
<td>(0.00)</td>
<td>(0.00)</td>
<td></td>
<td></td>
<td>(0.00)</td>
<td>(0.00)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>方差</td>
<td>0.1</td>
<td>0.27</td>
<td>方差</td>
<td>5.07</td>
<td>(0.00)</td>
<td>3.28</td>
</tr>
<tr>
<td></td>
<td>(0.46)</td>
<td>(0.39)</td>
<td></td>
<td></td>
<td>(0.00)</td>
<td>(0.00)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10%</td>
<td>−0.31</td>
<td>−0.78</td>
<td>10%</td>
<td>0.18</td>
<td>(0.43)</td>
<td>0.76</td>
</tr>
<tr>
<td></td>
<td>(0.62)</td>
<td>(0.78)</td>
<td></td>
<td></td>
<td>(0.22)</td>
<td>(0.22)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5%</td>
<td>0.22</td>
<td>−0.31</td>
<td>5%</td>
<td>−0.4</td>
<td>(0.65)</td>
<td>−0.18</td>
</tr>
<tr>
<td></td>
<td>(0.41)</td>
<td>(0.62)</td>
<td></td>
<td></td>
<td>(0.57)</td>
<td>(0.57)</td>
<td></td>
</tr>
<tr>
<td>小麦：ZCE⇒CBOT 1998—2001</td>
<td>均值</td>
<td>−0.37</td>
<td>−0.89</td>
<td>均值</td>
<td>1.04</td>
<td>(0.15)</td>
<td>0.44</td>
</tr>
<tr>
<td></td>
<td>(0.64)</td>
<td>(0.81)</td>
<td></td>
<td></td>
<td>(0.33)</td>
<td>(0.33)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>方差</td>
<td>−0.72</td>
<td>−1.25</td>
<td>方差</td>
<td>−0.39</td>
<td>(0.65)</td>
<td>−0.67</td>
</tr>
<tr>
<td></td>
<td>(0.76)</td>
<td>(0.90)</td>
<td></td>
<td></td>
<td>(0.75)</td>
<td>(0.75)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10%</td>
<td>−0.02</td>
<td>−0.57</td>
<td>10%</td>
<td>−0.66</td>
<td>(0.75)</td>
<td>−0.47</td>
</tr>
<tr>
<td></td>
<td>(0.51)</td>
<td>(0.72)</td>
<td></td>
<td></td>
<td>(0.68)</td>
<td>(0.68)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5%</td>
<td>−1.22</td>
<td>−0.80</td>
<td>5%</td>
<td>−1.43</td>
<td>(0.92)</td>
<td>−1.73</td>
</tr>
<tr>
<td></td>
<td>(0.89)</td>
<td>(0.79)</td>
<td></td>
<td></td>
<td>(0.96)</td>
<td>(0.96)</td>
<td></td>
</tr>
</tbody>
</table>
续表

<table>
<thead>
<tr>
<th>期货品种</th>
<th>M</th>
<th>10</th>
<th>20</th>
<th>期货品种</th>
<th>M</th>
<th>10</th>
<th>20</th>
</tr>
</thead>
<tbody>
<tr>
<td>小麦：</td>
<td></td>
<td></td>
<td></td>
<td>小麦：</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CBOT⇒ZCE</td>
<td>M</td>
<td>0.45</td>
<td>−0.18</td>
<td>CBOT⇒ZCE</td>
<td>M</td>
<td>8.53</td>
<td>5.90</td>
</tr>
<tr>
<td>1998—2001</td>
<td></td>
<td>(0.33)</td>
<td>(0.57)</td>
<td></td>
<td></td>
<td>(0.00)</td>
<td>(0.00)</td>
</tr>
<tr>
<td>M</td>
<td></td>
<td>−0.31</td>
<td>5.37</td>
<td>M</td>
<td></td>
<td>1.35</td>
<td>1.16</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.62)</td>
<td>(0.00)</td>
<td></td>
<td></td>
<td>(0.09)</td>
<td>(0.12)</td>
</tr>
<tr>
<td>10%</td>
<td></td>
<td>−0.43</td>
<td>0.38</td>
<td>10%</td>
<td></td>
<td>0.45</td>
<td>−0.25</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.57)</td>
<td>(0.35)</td>
<td></td>
<td></td>
<td>(0.33)</td>
<td>(0.60)</td>
</tr>
<tr>
<td>5%</td>
<td></td>
<td>−0.73</td>
<td>1.56*</td>
<td>5%</td>
<td></td>
<td>−0.80</td>
<td>−0.86</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.77)</td>
<td>(0.059)</td>
<td></td>
<td></td>
<td>(0.80)</td>
<td>(0.81)</td>
</tr>
<tr>
<td>糖：</td>
<td></td>
<td></td>
<td></td>
<td>糖：</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NYBOT⇒ZCE</td>
<td>M</td>
<td>11.98</td>
<td>8.55</td>
<td>ZCE⇒NYBOT</td>
<td>M</td>
<td>3.00</td>
<td>2.09</td>
</tr>
<tr>
<td>2006</td>
<td></td>
<td>(0.00)</td>
<td>(0.00)</td>
<td>2006</td>
<td></td>
<td>(0.00)</td>
<td>(0.02)</td>
</tr>
<tr>
<td>M</td>
<td></td>
<td>3.05</td>
<td>2.40</td>
<td>M</td>
<td></td>
<td>0.19</td>
<td>0.74</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.00)</td>
<td>(0.01)</td>
<td></td>
<td></td>
<td>(0.42)</td>
<td>(0.23)</td>
</tr>
<tr>
<td>10%</td>
<td></td>
<td>−0.22</td>
<td>0.20</td>
<td>10%</td>
<td></td>
<td>−0.99</td>
<td>−0.40</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.59)</td>
<td>(0.42)</td>
<td></td>
<td></td>
<td>(0.84)</td>
<td>(0.65)</td>
</tr>
<tr>
<td>5%</td>
<td></td>
<td>0.78</td>
<td>−0.31</td>
<td>5%</td>
<td></td>
<td>0.84</td>
<td>0.67</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.22)</td>
<td>(0.62)</td>
<td></td>
<td></td>
<td>(0.20)</td>
<td>(0.25)</td>
</tr>
</tbody>
</table>

注：均值、波动率 Granger 因果关系与 10% 下跌风险、5% 下跌风险溢出检验量 Q(M)，用于测算一般取后阶数 M=10,20，“*”表示 M 为 40,“⇒”表示溢出或影响方向，括号内 Q(M) 为对应 p 值。

![铜价格图](image1)

国内国外期货市场价格图

175
参考文献

An Empirical Study of Information Flow Between
Chinese and Foreign Futures Markets-Based
on Granger Causality in Mean, Variance and Risk

Hong Yongmiaoa,b Li Yic Lu Fengbind Wang Shouyangd

aDepartment of Economics, Cornell University
bWang Yanan Institute for Studies in Economics, Xiamen University
cSchool of Management of Graduate School of the Chinese Academy of Sciences
dAcademy of Mathematics and Systems Science, Chinese Academy of Sciences

Abstract: This paper uses Hong’s test (2001) to systematically study information flow between Chinese and major futures markets in the world. We focus on causality in mean and variance, downside risk spillover at the 10\% and 5\% confidence levels. Empirical results show that among 9 types of commodity futures we examined, 8 products have obvious information outflow to foreign futures markets except for wheat futures. In addition, after entering WTO, Chinese futures market becomes more closely linked with other major global futures markets. Moreover, some products traded on China’s futures exchanges influence global futures markets significantly. However, Chinese futures market as a whole still plays a very limited role in the process of information flow.

Key words: Futures, Granger causality, Extreme risk, Information spillover, GARCH

JEL Classifications: F36, G13, G15.